General Description

The MAX16804 current regulator operates from a 5.5V to 40V input voltage range and delivers 35mA to 350mA to one or more strings of high-brightness LEDs (HB LEDs). The output current of the MAX16804 is set by using an external current-sense resistor in series with the LEDs. A dual-mode DIM pin and on-board 200Hz ramp generator allow PWM dimming with an analog or PWM input signal. The analog control signal at dimming input DIM allows for a theater-dimming effect to be implemented. Fast turn-on and turn-off times ensure a wide-range PWM operation, while wave-shaping circuitry minimizes EMI. The differential current-sense input increases LED current accuracy and noise immunity. The MAX16804 is well suited for applications requiring high-voltage input and is able to withstand automotive load-dump events up to 45V. An on-board pass element minimizes external components while providing 3% output-current accuracy. Additional features include a 5V regulated output and short-circuit and thermal protection.

The MAX16804 is available in a thermally enhanced, $5mm \times 5mm$, 20-pin TQFN package and is specified over the automotive -40°C to +125°C temperature range.

_Applications

Automotive Interior: Map, Dome, and Courtesy Lighting

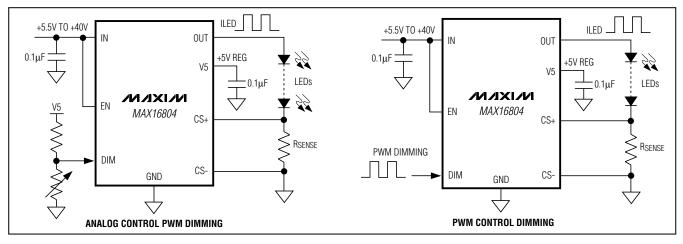
Automotive Exterior: Rear Combination Light (RCL) Daytime Running Light (DRL) Adaptive Front Light Warning Lights for Emergency Vehicles Navigation and Marine Indicators

Signage, Canopies, and Beacons

Features

 Flexible Dimming Control, Analog or PWM Control Signal for PWM and Theater Dimming

- 200Hz On-Board Ramp Generator
- Sinks to External PWM Signal (Up to 2kHz)
- ♦ 5.5V to 40V Operating Range
- ♦ 35mA to 350mA Adjustable LED Current
- ♦ 3% LED Current Accuracy
- ♦ High-Voltage (Up to 40V) DIM Pin
- Integrated Pass Element with Low-Dropout Voltage (0.5V typ)
- Additional +5V On-Board Regulator with 2mA Capability
- Differential LED Current Sense
- Low 200mV Current-Sense Reference Reduces Power Losses
- Wave-Shaped Edges Minimize EMI During PWM Dimming
- Output Short-Circuit and Thermal-Shutdown Protection
- Available in Small, Thermally Enhanced, 5mm x 5mm, 20-Pin TQFN Package
- -40°C to +125°C Operating Temperature Range


Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX16804ATP+	-40°C to +125°C	20 TQFN-EP*	T2055M-5
+Denotes lead-fre	ee package		

*EP = Exposed pad.

Pin Configuration appears at end of data sheet.

_Simplified Diagrams

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

IN to GND DIM, OUT, EN to GND IN Slew Rate (20V < V_{IN} < 45V) CS+, V5 to GND CS- to GND.	0.3V to (V _{IN} + 0.3V) 250mV/µs 0.3V to +6V
OUT Short Circuited to GND Duration	0.3V 10 +0.3V
(at V _{IN} < +16V)	1hour

Maximum Current Into Any Pin (except IN and OUT)...... \pm 20mA Continuous Power Dissipation (T_A = +70°C)

20-Pin TQFN (derate 34.5mW/°C above	, +70°C)2758.6mW
Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{EN} = 12V, C_{V5} = 0.1\mu$ F, $I_{V5} = 0, CS$ - = GND, $R_{SENSE} = 0.56\Omega$ (see the *Typical Operating Circuit*), $V_{DIM} = 4V$, $T_A = T_J = -40^{\circ}$ C to +125°C, unless otherwise noted. Typical values are at $T_A = T_J = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
Supply Voltage Range	VIN	(Note 2)	5.5		40.0	V
Ground Current	lG	I _{LOAD} = 350mA		2.5	4.5	mA
Shutdown Supply Current	ISHDN	$V_{EN} \le 0.3V$		12	40	μΑ
Guaranteed Output Current	IOUT	$R_{SENSE} = 0.55\Omega$	350			mA
Output Current Accuracy		35mA < I _{OUT} < 350mA, not including R _{SENSE} tolerance			3	%
Dropout Valtage (Nate 2)		I _{OUT} = 350mA, 12V < V _{IN} < 40V		0.4	1.2	V
Dropout Voltage (Note 3)	ΔV_{DO}	I _{OUT} = 350mA, 6.5V < V _{IN} < 12V		0.5	1.5	V
Output Current Slew Rate		Current rising, DIM rising to 4V		17		mAlue
(External PWM Signal at DIM)		Current falling, DIM falling to 0.6V		17		mA/µs
Short-Circuit Current		$V_{OUT} = 0V$		600		mA
ENABLE INPUT						
EN Input Current	I _{EN}				100	nA
EN Input-Voltage High	VIH		2.8			V
EN Input-Voltage Low	VIL				0.6	V
Enable Turn–On Time	ton	EN rising edge to 90% of OUT		250		μs
CURRENT SENSE (Note 4)						
Regulated RSENSE Voltage	VRSENSE	VSENSE = VCS+ - VCS-	192	198	204	mV
Input Current (CS+)		$V_{CS+} = 220 \text{mV}$			+14	μΑ
Input Current (CS-)		$V_{CS+} = 220 \text{mV}$	-75			μA
INTERNAL RAMP GENERATOR						
Internal Ramp Frequency	f RAMP		180	200	220	Hz
External Sync Frequency Range	fdim		80		2000	Hz
External Sync Voltage Low					0.4	V
External Sync Voltage High			2.8			V
EXTERNAL PWM DIMMING INPU	JT					
DIM Input Current					1	μΑ
Turn-On Time	ton	After DIM rising to 4V (Note 5)		28	52	μs
Turn-Off Time	tOFF	After DIM falling to 0.6V (Note 5)		19	38	μs

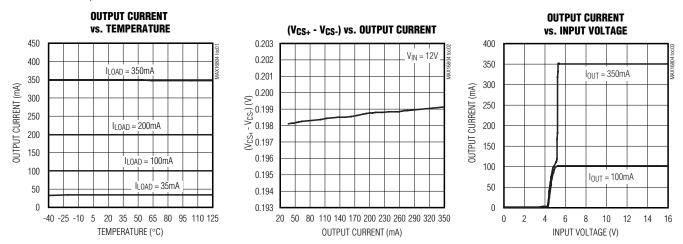
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{IN} = V_{EN} = 12V, C_{V5} = 0.1\mu$ F, $I_{V5} = 0, CS$ - = GND, $R_{SENSE} = 0.56\Omega$ (see the *Typical Operating Circuit*), $V_{DIM} = 4V$, $T_A = T_J = -40^{\circ}$ C to +125°C, unless otherwise noted. Typical values are at $T_A = T_J = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
THERMAL PROTECTION						
Thermal-Shutdown Temperature	T _{J(SHDN)}			+155		°C
Thermal-Shutdown Hysteresis				23		°C
+5V REGULATOR						
Output Voltage Regulation	V5	$0 \le I_{V5} \le 2mA$	4.8	5.1	5.4	V
V5 Short-Circuit Current		V5 = 0V (Note 6)		12		mA

Note 1: All devices are 100% production tested at $T_A = +25$ °C. Limits over the operating temperature range are guaranteed by design.

Note 2: Resistors were added from OUT to CS+ to aid with the power dissipation during testing.


Note 3: Dropout is measured as follows:

Connect a resistor from OUT to CS+. Connect $R_{SENSE} = 0.56\Omega$ from CS+ to CS-. Set $V_{IN} = V_{OUT} + 3V$ (record V_{OUT} as V_{OUT1}). Reduce V_{IN} until $V_{OUT} = 0.97 \times V_{OUT1}$ (record as V_{IN2} and V_{OUT2}). $\Delta V_{DO} = V_{IN2} - V_{OUT2}$.

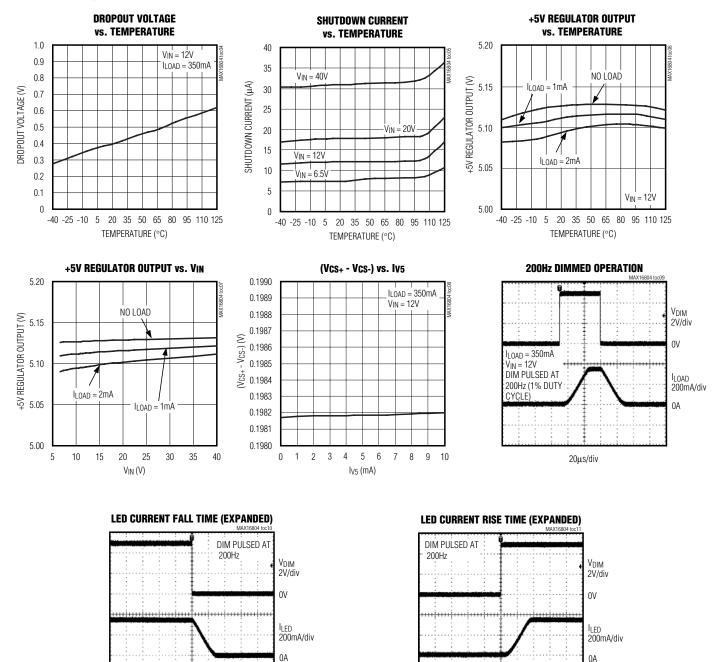
Note 4: I_{V5} = 0mA.

Note 5: t_{ON} time includes the delay and the rise time needed for I_{OUT} to reach 90% of its final value. t_{OFF} time is the time needed for I_{OUT} to drop below 10%. See the *Typical Operating Characteristics*. t_{ON} and t_{OFF} are tested with 13 Ω from OUT to CS+.

Note 6: Thermal shutdown does not function if the output of the 5V reference is shorted to ground. Shorting V5 to GND disables the output.

Typical Operating Characteristics

 $(V_{IN} = 12V, V_{EN} = V_{IN}, C_{V5} = 0.1 \mu$ F, $I_{V5} = 0$, CS- = GND, R_{SENSE} = 0.56 Ω , connect OUT to CS+, $V_{DIM} = 4V$, $T_A = +25^{\circ}$ C, unless otherwise noted.)

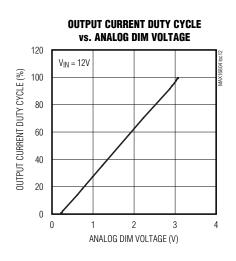

MIXIM

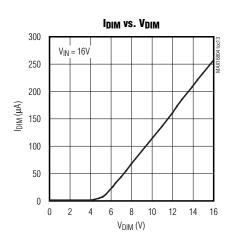
Typical Operating Characteristics (continued)

20µs/div

///XI//

 $(V_{IN} = 12V, V_{EN} = V_{IN}, C_{V5} = 0.1 \mu$ F, $I_{V5} = 0$, CS- = GND, $R_{SENSE} = 0.56\Omega$, connect OUT to CS+, $V_{DIM} = 4V$, $T_A = +25^{\circ}$ C, unless otherwise noted.)

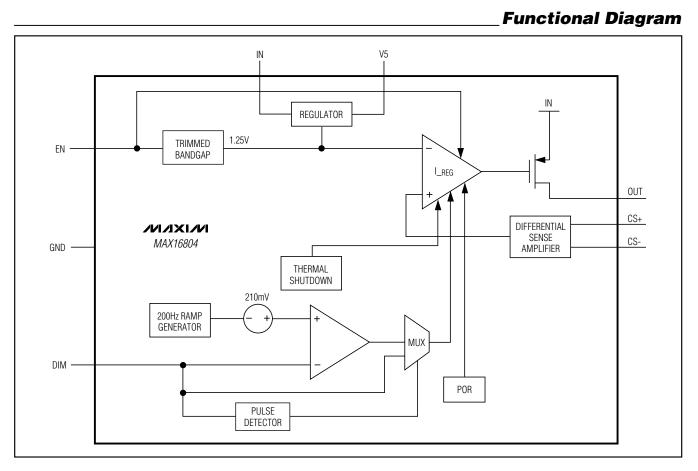



4

20µs/div

Typical Operating Characteristics (continued)

 $(V_{IN} = 12V, V_{EN} = V_{IN}, C_{V5} = 0.1\mu$ F, $I_{V5} = 0$, CS- = GND, R_{SENSE} = 0.56 Ω , connect OUT to CS+, $V_{DIM} = 4V$, $T_A = +25$ °C, unless otherwise noted.)



Pin Description

PIN	NAME	FUNCTION
1, 20	OUT	Current-Regulated Output. Connect pin 1 to pin 20.
2, 3	IN	Input Supply. Bypass IN with a 0.1µF (min) capacitor to GND. Connect pin 2 to pin 3.
4, 9, 11, 18	N.C.	No Connection. Leave unconnected (internal connection).
5–8, 10, 16	GND	Ground
12, 15	V5	+5V Regulated Output. Connect a 0.1µF capacitor from V5 to GND.
13	CS+	Positive Input of the Internal Differential Amplifier. Connect the current-sense resistor between CS+ and CS- to program the output current level.
14	CS-	Negative Input of the Internal Differential Amplifier. Connect the current-sense resistor between CS- and CS+ to program the output current level.
17	DIM	Dimming Input. See the Dimming Input (DIM) section.
19	EN	Enable Input. Drive EN high to enable the output and the 5V LDO.
	EP	Exposed Pad. Connect to the ground plane for effective power dissipation. Do not use as the only ground connection.

MAX16804

Detailed Description

The MAX16804 is a high-current regulator capable of providing up to 350mA of current to one or more strings of HB LEDs. A wide operating input voltage range of 5.5V to 40V makes the MAX16804 ideal for automotive applications. A +5V regulated output provides up to 2mA of current to power external circuitry. In addition, the MAX16804 features thermal and output short-circuit protection. The wide operating voltage range helps protect the MAX16804 against large transients such as those found in load-dump situations up to 45V.

The MAX16804 uses a feedback loop to control the output current. The differential voltage across the sense resistor is compared to a fixed reference voltage, and the error is amplified to serve as the drive to the internal pass device (see the *Functional Diagram*). The regulation point is factory-set at (V_{CS+} - V_{CS-}) = 198 ±6mV. The regulated current is user-defined by the value of R_{SENSE}.

The MAX16804 is a current controller internally optimized for driving the impedance range expected from one to ten or more HB LEDs.

Dimming Input (DIM)

The MAX16804's dimming input functions with either an analog or PWM control signal. If the pulse detector detects three edges of a PWM signal with a frequency range between 80Hz to 2kHz, the MAX16804 synchronizes to external PWM input signal and pulse-width-modulates the LED current. If an analog control signal is applied to DIM, the MAX16804 compares the DC input to an internally generated 200Hz ramp to pulse-width-modulate the LED current.

The output current duty cycle is adjustable from 0% to 100% (0.21V < VDIM < 3.1V).

Use the following formula to calculate the output current duty cycle:

Duty cycle = $(V_{DIM} - 0.21V) / (2.895V)$ (1)

The dimming feature can be used for LED brightness adjustment (see the *Simplified Diagrams*) and theater dimming. If an external PWM signal is used, the theaterdimming effect can be achieved by varying the PWM duty cycle. Figure 1 shows a simple circuit that implements theater dimming with a DC input signal.

+5V Regulator

The MAX16804 includes a fixed +5V output regulator that delivers up to 2mA of load current throughout the 6.5V to 40V input voltage range. Connect a 0.1 μ F compensation capacitor from V5 to ground. Shorting V5 to ground disables the thermal shutdown. When EN is low, V5 is off. V5 stays on during PWM dimming.

Thermal Protection

The MAX16804 enters a thermal-shutdown mode in the event of overheating. This typically occurs in overload or short-circuit conditions on the output. If the junction temperature exceeds $T_J = +155$ °C (typ), the internal thermal-protection circuitry turns off the series pass device. The MAX16804 recovers from thermal-shutdown mode once the junction temperature drops by 23°C (typ). The part therefore protects itself by thermally cycling in the event of a short-circuit or overload condition.

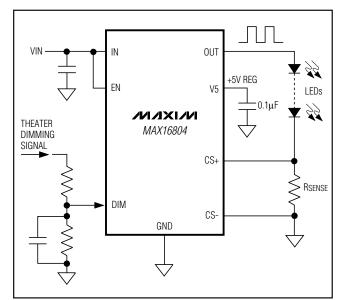


Figure 1. Theater Dimming

_Applications Information

Programming the LED Current

The MAX16804 uses a sense resistor across CS+ and CS- to set the LED current. The differential sense amplifier connected across R_{SENSE} provides ground-loop immunity and low-frequency noise rejection. The LED current is given by

 $I_{LED} = V_{SENSE} / R_{SENSE}$ (2)

Input-Voltage Considerations

For proper operation, the minimum input voltage must always be:

 $VIN(MIN) \ge VRSENSE(MAX) + VFT(MAX) + \Delta VDO(MAX)$ (3)

where V_{FT(MAX)} is the maximum forward voltage of all series connected LEDs and $\Delta V_{DO(MAX)}$ is the maximum drop output voltage. The minimum operating voltage of the device is +5.5V.

Two Brightness Levels for TAIL/STOP Lights

Figure 2 shows two-level brightness adjustment using the MAX16804 with minimum external components. Set the dimming level with a resistive divider connected to DIM. See Equation 1 for details.

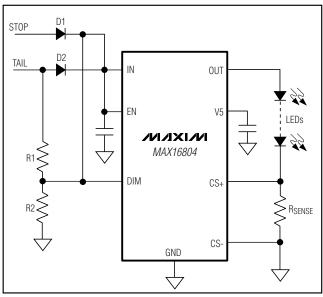


Figure 2. Two-Level Brightness Operation

MAX16804

LED Current Thermal Foldback

With a minimum number of external components, the MAX16804 provides LED current thermal foldback using a negative temperature coefficient (NTC) thermistor. Figure 3 shows a thermistor connected to V5 and the CS+ of the MAX16804. As the temperature increases, the voltage drop across R2 increases causing the LED current to decrease.

$$I_{LED} = [V_{SENSE} - [R2 / (R2 + RT)] \times V5] / R1$$
 (4)

Other Applications

Figure 4 shows an application circuit with the MAX16804 using a single BJT to provide high output current. For proper operation:

 $V_{IN(MIN)} > V_{CESAT(MAX)} + V_{FT(MAX)} + V_{RSENSE} \tag{5} \label{eq:VIN(MIN)} where V_{CESAT(MAX)} is the maximum saturation voltage of the external BJT.$

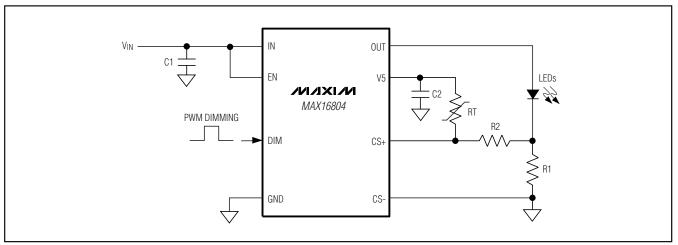


Figure 3. LED Current Thermal Foldback Operation with an NTC Thermistor

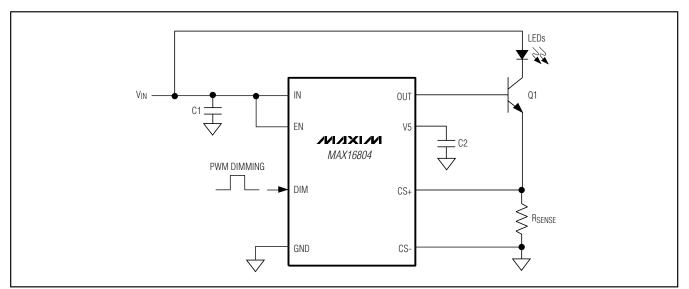
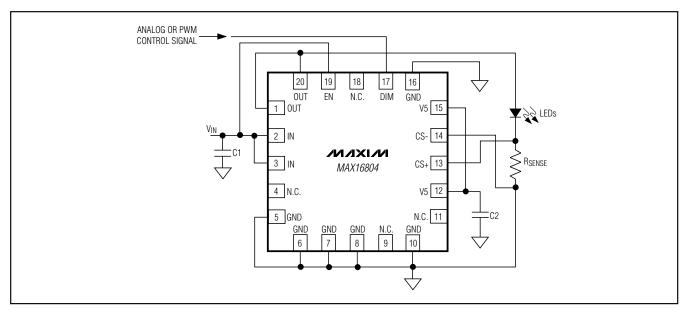
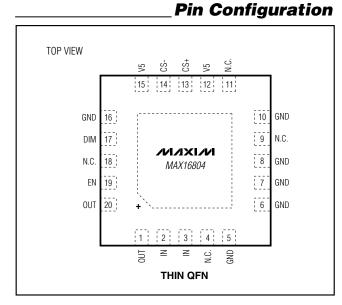
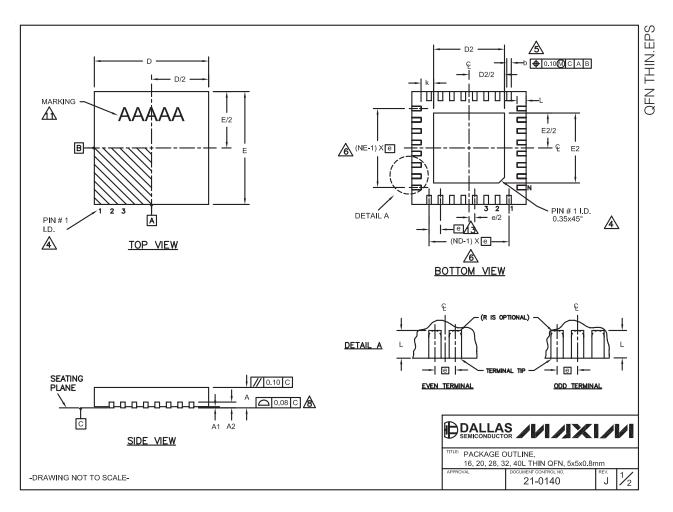



Figure 4. Increased Output Current (Amper Range) with a Single BJT


Typical Operating Circuit

MAX16804


Chip Information

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

		СС	оммс	N DIM	ENS	IONS									- [EXI	POSE		VARI		١S		
PKG.	16L 5x	;	20)L 5x5		28	BL 5x5	5	32	2L 5>	(5	4	0L 5x	5	ł	DKC		D2			E2		-	
SYMBOL	MIN. NOM.	MAX.	MIN.	NOM. M	AX. M	MIN. I	NOM. I	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		PKG. CODES	MIN.	NOM.	MAX	MIN.		. MA	X.	
А	0.70 0.75	0.80	0.70	0.75 0	.80 (0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	ł	T1655-2	3.00	3.10	3.20	3.00	3.10	-	_	
A1	0 0.02	0.05	0	0.02 0	.05	0 (0.02	0.05	0	0.02	0.05	0	0.02	0.05	ł	T1655-3	3.00	3.10	3.20	3.00	3.10			
A2	0.20 RE	F.	0.2	0 REF		0.2	0 RE	=.	0.2	20 RE	F.	0.	20 RE	F.	ł	T1655N-1	3.00	3.10	3.20	3.00	3.10	_	_	
b	0.25 0.30	0.35	0.25	0.30 0	.35 0	0.20	0.25	0.30	0.20	0.25	0.30	0.15	0.20	0.25	ł	T2055-3	3.00	3.10	3.20	3.00	3.10			
D				5.00 5											ł	T2055-4	3.00	3.10	3.20	3.00	3.10			
E	4.90 5.00	_	_		_	_	_	_	_						ł	T2055-5	3.15	3.25	3.35	3.15	3.25	_		
е	0.80 BS			35 BSC	<u> </u>		50 BS			50 B	SC.		.40 BS	SC.	ł	T2855-3	3.15	3.25	3.35	3.15	<u> </u>			
k	0.25 -	_	0.25	-	_	0.25	-	_	0.25	-	-	0.25	-	-	ł	T2855-4	2.60	2.70	2.80	2.60	2.70	_		
L		0.50	0.45		.65 (_		0.65	0.30		0.50	0.30	0.40	0.50	ł	T2855-5	2.60	2.70	2.80	2.60	2.70			
N ND	16			20 5	+		28 7	_		32 8			40	_	ł	T2855-6	3.15	3.25	3.35	3.15	3.25	_		
NE	4	\rightarrow		5	+		7	\rightarrow		8			10	_	ł	T2855-7	2.60	2.70	2.80	2.60	2.70			
JEDEC	WHHE	-	V	VHHC	+	W	/HHD-	1	W	HHD	-2	-			ł	T2855-8	3.15	3.25	3.35	3.15	3.25			
								<u> </u>			_				ł	T2855N-1	3.15	3.25	3.35	3.15	3.25			
															- H	T3255-3	3.00		3.20	3.00				
															I								201	
TEC.															ł	T3255-3	3.00	3.10	3.20	3.00	3.10	_		
	IENSIONING	& TOI	FRA		CON	FOR	ито	ASME	Y14	5M-1	994							3.10				3.2	20	
1. D I M															-	T3255-4	3.00	3.10 3.10	3.20 3.20	3.00	3.10 3.10	3.2 3.2	20 20	
1. DIM 2. ALL	DIMENSION	IS AR	EINN	11LLIME	TER	S. AN									-	T3255-4 T3255-5	3.00 3.00	3.10 3.10	3.20 3.20 3.20	3.00 3.00	3.10 3.10	3.2 3.2 3.2	20 20 20	
 DIM ALL N IS 	DIMENSION	IS AR . NUM	E IN N IBER	ILLIME	TER	RS. AN	GLES	S ARE	IN DE	EGRE	EES.		SHALL			T3255-4 T3255-5 T3255N-1	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.2 3.2 3.2 3.6 3.6	20 20 20 50 50	
1. DIM 2. ALL 3. N IS A THE COP	DIMENSION	IS AR NUM #1 ID ESD 9	E IN N IBER ENTIF 95-1 S T BE	ILLIME OF TEF IER AN PP-012 LOCAT	ETER MIN/ ID TE DE ED W	S. AN ALS. ERMIN ETAIL: VITHIN	IGLES NAL N S OF N THE	UMBE TERM	IN DE ERING IINAL E IND	GRE GCON #1 IE	EES. NVEN DENTI	FIER	٩RE			T3255-4 T3255-5 T3255N-1 T4055-1	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40	3.10 3.10 3.10 3.50 3.50	3.2 3.2 3.2 3.6 3.6	20 20 20 50 50	
1. DIM 2. ALL 3. N IS A THE COP IDE IDE	DIMENSION THE TOTAL TERMINAL NFORM TO J TIONAL, BU	IS AR NUM #1 ID ESD 9 MUS Y BE 1 PPLIE	E IN N IBER ENTIF 95-1 S T BE I EITHE	TER AN PP-012 LOCAT R A MO	ETER MIN/ ID TE D TE ED W DLD (LIZE	RS. AN ALS. ERMIN ETAIL: VITHIN OR M	IGLES NAL N S OF N THE ARKE RMIN	ARE UMBE TERM ZON D FEA	IN DE ERING IINAL E IND ATURI	EGRE #1 IE PICAT E.	EES. NVEN DENTI ED. 1	FIER . THE TI	ARE ERMIN	IAL #1		T3255-4 T3255-5 T3255N-1 T4055-1	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.2 3.2 3.2 3.6 3.6	20 20 20 50 50	
1. DIM 2. ALL 3. N IS A THE COP OPT IDE 0.25	DIMENSION THE TOTAL E TERMINAL NFORM TO TIONAL, BUT NTIFIER MA	IS AR NUM #1 ID ESD MUS Y BE I PPLIE 30 mn	E IN N IBER 95-1 S T BE EITHE S TO n FRC	ILLIME OF TEF IER AN PP-012 LOCAT R A MO METAI M TER	ETER MIN/ ID TE D TE ED W DLD (LIZE MIN/	RS. AN ALS. ERMIN ETAIL: VITHIN OR M ED TE AL TIP	IGLES NAL N S OF N THE ARKE RMIN	S ARE UMBE TERM ZON D FE/ AL AN	IN DE ERING IINAL E IND ATURI ID IS	EGRE #1 IE PICAT E. MEAS	EES. NVEN DENTI ED. 1 SURE	IFIER . THE TI	ARE ERMIN WEEI	IAL #1 N	ΠVEI	T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.2 3.2 3.2 3.6 3.6	20 20 20 50 50	
1. DIM 2. ALL 3. N IS 4. THE COP OPT IDE 6. DIM 0.25 ND	DIMENSION THE TOTAL TERMINAL NFORM TO TIONAL, BUT NTIFIER MA MENSION 6 A 5 mm AND 0	IS AR NUM #1 ID ESD 9 MUS Y BE 1 PPLIE 30 mn	E IN M IBER ENTIF 95-1 S T BE I EITHE S TO n FRC O THE	AILLIME OF TEF IER AN PP-012 LOCAT R A MO METAL M TER	ETER MIN/ ID TE ED W DLD C LLIZE MIN/ BER (RS. AN ALS. ERMIN ETAIL: OR M ED TE AL TIP OF TE	IGLES NAL N S OF N THE ARKE RMIN	ARE UMBE TERM ZON D FEA AL AN	IN DE ERING IINAL E IND ATURI ID IS ON E/	EGRE #1 IE PICAT E. MEAS	EES. NVEN DENTI ED. 1 SURE	IFIER . THE TI	ARE ERMIN WEEI	IAL #1 N	IVEI	T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.2 3.2 3.2 3.6 3.6	20 20 20 50 50	
1. DIM 2. ALL 3. N IS A THE COP OPT IDE A DIM 0.25 A ND 7. DEF	DIMENSION THE TOTAL E TERMINAL NFORM TO J TIONAL, BUT NTIFIER MA IENSION & A 5 mm AND 0 AND NE RE	IS AR NUM #1 ID ESD 9 MUS Y BE 8 PPLIE 30 mn ER T	E IN M IBER ENTIF 95-1 S T BE EITHE S TO n FRC O THE OSSIE	ILLIME OF TEF IER AN PP-012 OCAT R A MO METAL M TER E NUME	ETER MIN/ ID TE ED W DLD (LIZE MIN/ BER (A SYI	es. An Als. Ermin Tail: Vithin Or M, Ed te Al tip Of te MMET	IGLES NAL N S OF N THE ARKE RMIN C ERMIN	ARE UMBE TERM ZON D FEA AL AN IALS (IN DE ERING IINAL E IND ATURI ID IS ON E/ SHION	EGRE #1 IE DICAT E. MEAS ACH I	EES. NVEN DENTI ED. 1 SURE D ANI	IFIER THE TI ED BE ^T D E SI	ARE ERMIN WEEM DE RE	IAL #1 N SPECT		T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.2 3.2 3.2 3.6 3.6	20 20 20 50 50	
1. DIM 2. ALL 3. N IS 4. THE COP OPPIDE IDE 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	DIMENSION THE TOTAL E TERMINAL NFORM TO 3 TIONAL, BUT INTIFIER MA 1ENSION b A 5 mm AND 0 AND NE RE POPULATIO	IS AR #1 ID IESD 9 MUS Y BE 1 PPLIE 30 mn ER T N IS P APPLI FORM	E IN N IBER 95-1 S T BE EITHE S TO n FRC O THE OSSIE IES TO	ILLIME OF TEF IER AN PP-012 LOCAT R A MO METAL M TER E NUME BLE IN D THE I	ETER MIN/ ID TE ED W DLD C LIZE MINA BER C A SYI EXPC	RS. AN ALS. ERMIN ETAIL: VITHIN OR MA ED TE AL TIP OF TE MMET DSED	IGLES NAL N S OF N THE ARKE RMIN C ERMIN TRICA	ARE UMBE TERM ZON D FEA AL AN IALS (L FAS	IN DE ERING IINAL E IND ATURI ID IS ON E/ SHION (SLU	EGRE #1 IE DICAT E. MEAS ACH I J. G AS	EES. NVEN DENTI ED. 1 SURE D ANI	IFIER . THE TI ED BE D E SI	ARE ERMIN WEEM DE RE	IAL #1 N SPECT ERMIN/		T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.10 3.50 3.50	3.2 3.2 3.2 3.6 3.6	20 20 20 50 50	
1. DIM 2. ALL 3. N IS 4. THE COP OP IDE 0.25 6. ND 7. DEF 8. COF 9. DR/ 728	DIMENSION THE TOTAL E TERMINAL NFORM TO INTIFIER MA IENSION & A 5 mm AND 0 AND NE RE POPULATION PLANARITY AWING CON	IS AR 41 ID ESD MUS Y BE E 20 mm ER T N IS P APPLI FORM 855-6	E IN N IBER ENTIF 95-1 S T BE EITHE S TO n FRC O THE OSSIE IES TO	MILLIME OF TEF IER AN OPP-012 LOCAT R A MO METAL M TER E NUME BLE IN D THE I JEDEC	ETER RMINA ID TE ED W DLD C LLIZE MINA BER C MINA BER C A SYI EXPC	RS. AN ALS. ERMIN ETAL: VITHIN OR M/ ED TE AL TIP OF TE MMET DSED 220, E	IGLES NAL N S OF N THE ARKE RMIN C ERMIN TRICA	ARE UMBE TERM ZON D FEA AL AN IALS (L FAS	IN DE ERING IINAL E IND ATURI ID IS ON E/ SHION (SLU	EGRE #1 IE DICAT E. MEAS ACH I J. G AS	EES. NVEN DENTI ED. 1 SURE D ANI	IFIER . THE TI ED BE D E SI	ARE ERMIN WEEM DE RE	IAL #1 N SPECT ERMIN/		T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50 ISIONS	3.2 3.2 3.2 3.6 3.6 3.6 3.6	20 20 20 50 50 50 E	
1. DIM 2. ALL 3. N IS COP OPT IDE M 0.25 M 0.25 M 0.25	DIMENSION THE TOTAL E TERMINAL NFORM TO INTIFIER MA IENSION & A 5 mm AND 0 AND NE RE POPULATION PLANARITY AWING CON 355-3 AND 72	IS AR HIDI ESDS MUS Y BE E O MUS Y BE E 30 mn ER T N IS P APPLI FORM 855-6 LL NO	E IN M IBER (95-1 S T BE EITHE S TO n FRC 0 THE OSSIE IES TO (1S TO () T EX(AILLIME DF TEF IER AN PP-012 LOCAT R A MO METAL M TER BLE IN D THE I JEDEC	TER MIN/ ID TE ED W DLD (LLIZE MIN/ BER (A SYI EXPC : MO2	RS. AN ALS. ERMIN ETAILS VITHIN OR M ED TE AL TIP OF TE MMET DSED 220, E	IGLES NAL N S OF N THE ARKE RMIN C ERMIN TRICA HEAT	ARE TERM ZON D FEA AL AN IALS (L FAS SINH PT EX	IN DE ERING IINAL E IND ATURI ID IS ON E/ SHION C SLU	EGRE #1 IE DICAT E. MEAS ACH I J. G AS ED PA	EES. NVEN DENTI ED. 1 SURE D ANI	IFIER . THE TI ED BE D E SI	ARE ERMIN WEEM DE RE	IAL #1 N SPECT ERMIN/		T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40 *	3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.20 3.60 3.60	3.00 3.00 3.00 3.40 3.40	3.10 3.10 3.50 3.50 ISIONS	3.2 3.2 3.2 3.6 3.6 3.6 3.6	20 20 20 50 50	
1. DIM 2. ALL 3. N IS COP OPT IDE COP 0.25 0.2	DIMENSION THE TOTAL TERMINAL NFORM TO ITIONAL, BUT INTIFIER MA IENSION & A 5 mm AND 0 AND NE RE POPULATION PLANARITY AWING CON 355-3 AND TZ RPAGE SHA	IS AR NUM #1 IDI ESD 9 NUS Y BE I NUS Y BE I NUS Y BE I NUS Y BE I NUS S S S S S S S S S S S S S S S S S S	E IN M IBER (ENTIF 95-1 S T BE (EITHE EITHE S TO O THE OSSIE IES TO IS TO CHAG	AILLIME DF TEF IER AN PP-012 LOCAT R A MO METAL M TER E NUME BLE IN D THE I JEDEC CEED O E ORIE	TER MIN/ ID TE ED W DLD C LLIZE MIN/ BER (A SYN EXPC : MO2 .10 m NTAT	S. AN ALS. ERMIN ETAIL: VITHIN OR M. ED TE AL TIP OF TE MME ^T OSED 220, E nm. TION	IGLES NAL N S OF N THE ARKE RMIN C ERMIN TRICA HEAT EXCEP	ARE UMBE TERM D FE/ AL AN IALS (LL FAS - SINH PT EX	IN DE ERING INAL E IND ATURI ID IS ON E/ SHION (SLU POSE	EGRE #1 IE DICAT E. MEAS ACH I J. G AS ED PA	EES. NVEN DENTI ED. 1 SURE D ANI	IFIER . THE TI ED BE D E SI	ARE ERMIN WEEM DE RE	IAL #1 N SPECT ERMIN/		T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40 *	3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.20 3.60 3.60 OMMOI	3.00 3.00 3.40 3.40 0.00 3.40 0.00 0.00	3.10 3.10 3.10 3.50 3.50 ISIONS	3.2 3.2 3.2 3.6 3.6 3.6 3.6	20 20 20 50 50 50 E	
2. ALL 3. N IS THE COP OPT IDE 0.25 ND 7. DEF 0.25 ND 7. DEF 0.25 ND 7. DEF 12. NUN	DIMENSION THE TOTAL TERMINAL TERMINAL TIONAL, BU' NTIFIER MA MENSION & A MIN NE RE POPULATION PLANARITY AWING CON S5-3 AND T RPAGE SHA RKING IS FC	IS AR NUM #1 IDI IESD 9 MUS Y BE 1 PPLIE 30 mm FER T V IS P APPLI FORM 8855-6 LL NO R PAC ADS 5	E IN M IBER (ENTIF 95-1 S T BE EITHE ES TO O THE OSSIE ES TO O THE OSSIE S TO	AILLIME DF TEF IER AN PP-012 LOCAT R A MO METAL M TER E NUME BLE IN JEDEC CEED O E ORIE N ARE	TER MIN/ ID TE ED W DLD C LLIZE MIN/ BER (A SYI EXPC : MO2 .10 m NTAT	IS. AN ALS. ERMIN ETAIL1 VITHIN OR M ED TE AL TIP OF TE MMET 220, E 220, E nm. TION	IGLES NAL N S OF N THE ARKE RMIN C ERMIN C ERMIN TRICA HEAT HEAT HEAT	ARE UMBE ZON D FEA AL AN IALS (LL FAS T SIN ⁶ PT EX RENC	IN DE ERING INAL E IND ATURI ID IS ON E/ BHION C SLU POSE CE ON NLY.	EGRE 3 COM #1 IE DICAT E. MEAS ACH I N. G AS ED P/ ILY.	EES. NVEN DENTI ED. 1 SURE D ANI S WEL	IFIER T THE TI D BE D E SI L AS	ARE ERMIN TWEEN DE RE THE TH	IAL #1 SPECT ERMIN/ OR	ALS.	T3255-4 T3255-5 T3255N-1 T4055-1 T4055-2	3.00 3.00 3.00 3.40 3.40 *	3.10 3.10 3.50 3.50 *SEE C	3.20 3.20 3.20 3.60 3.60 00MM01 00MM01 ACKAG	3.00 3.00 3.40 3.40 3.40 DIMEN DIMEN DIMEN DIMEN BE OUT	3.10 3.10 3.10 3.50 3.50 SIONS	3.2 3.2 3.2 3.6 3.6 5 TABL	20 20 20 50 50 50 50 50 50 50 50 50 50 50 50 50	

MAX16804

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ___

is a registered trademark of Maxim Integrated Products, Inc.

_ 11