10-Channel Serial-Input Latched Display Driver

Features

- High output voltage 80V
- High speed 5 MHz @ $5.0 \mathrm{~V}_{\text {DD }}$
- Low power $\mathrm{I}_{\mathrm{BB}} \leq 0.1 \mathrm{~mA}$ (all high)
- Active pull down $100 \mu \mathrm{~A}$ min
- Output source current 100 mA at $60 \mathrm{~V} \mathrm{~V}_{\mathrm{PP}}$
- Each device drives 10 lines
- High-speed serially-shifted data input
- 5.0 V CMOS-compatible inputs
- Latches on all driver outputs
- Pin-compatible replacement for UCN5810A and TL4810A, TL4810B

Applications

- High speed dot matrix print head driver
- VFD (vacuum fluorescent display) driver

Ordering Information

Device	Package Options	
	20-J Lead PLCC	20-Lead SOW
HV6810	HV6810PJ-G	HV6810WG-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Logic supply voltage, $\mathrm{V}_{\mathrm{DD}}{ }^{(1)}$	7.5 V
Driver supply voltage, $\mathrm{V}_{\mathrm{BB}}{ }^{(1)}$	90 V
Output voltage ${ }^{(1)}$	90 V
Input voltage ${ }^{(1)}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Continuous total power dissipation at 25 20-J free-air temperature $20-L e a d ~ P L C C ~(P J) ~$	
Operating temperature range	$1000 \mathrm{~mW}^{(2)}$

[^0]
General Description

The HV6810 is a monolithic integrated circuit designed to drive a dot matrix or segmented vacuum fluorescent display (VFD). These devices feature a serial data output to cascade additional devices for large displays.

A 10-bit data word is serially loaded into the shift register on the positive-going transition of the clock. Parallel data is transferred to the output buffers through a 10-bit D-type latch while the latch enable input is high, and is latched when the latch enable is low. When the blanking input is high, all of the outputs are low.

Outputs are structures formed by double-diffused MOS (DMOS) transistors with output voltage ratings of 80 V and 25 mA source-current capability. All inputs are compatible with CMOS levels.

Pin Configurations

20-J Lead PLCC (PJ)
(top view)

20-Lead SOW (WG) (top view)

Product Marking

YY = Year Sealed $W W=$ Week Sealed
L = Lot Number
C = Country of Origin* A = Assembler ID* $\ldots=$ "Green" Packaging
*May be part of top marking
20
Lead PLCC (PJ)

20-Lead SOW (WG)

Recommended Operating Conditions

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{DD}	Supply voltage	4.5	-	5.5	V	---
V_{BB}	Supply voltage	20	-	80	V	---
V_{SS}	Supply voltage	-	0	-	V	---
V_{IH}	High-level input voltage (for $\left.\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}\right)$	3.5	-	5.3	V	---
V_{IL}	Low-level input voltage	-0.3	-	0.8	V	---
$\mathrm{I}_{\text {OH }}$	Continuous high-level Q output current	-25	-	-	mA	---
$\mathrm{f}_{\mathrm{CLK}}$	Clock frequency	-	-	5.0	MHz	---
T_{A}	Operating ambient temperature	-40	-	+85	${ }^{\circ} \mathrm{C}$	---

Power-Up / Power-Down Sequence

Step	Description
1	Connect ground V_{SS}
2	Apply V_{DD}
3	Set all inputs (Data, CLK, Enable, etc.) to a known state
4	Apply V_{BB}
5	The V_{BB} should not drop below V_{DD} or float during operation.

Power-down sequence should be the reverse of the above.

DC Electrical Characteristics

$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, V_{B B}=60 \mathrm{~V}, V_{S S}=0, T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Sym	Parameter		Min	Typ	Max	Units	Conditions
V_{OH}	High level output voltage	Q outputs	57.5	58	-	V	$\mathrm{I}_{\mathrm{OH}}=25 \mathrm{~mA}$
		Serial output	4.0	4.5	-		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=-100 \mu \mathrm{~A}$
V_{OL}	Low level output voltage	Q outputs	-	0.15	1.0	V	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A},$ blanking input at $V_{D D}$
		Serial output	-	0.05	0.1		$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$
I_{OL}	Low level Q output current (pull-down current)		60	80	-	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=\mathrm{Max}, \mathrm{V}_{\mathrm{OL}}=0.7 \mathrm{~V}$
$\mathrm{I}_{\text {O(OFF) }}$	Off-state output current		-	-1.0	-15	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0, \text { Blanking input } \\ & \mathrm{T}_{\mathrm{A}}=\text { Max at } \mathrm{V}_{\mathrm{DD}} \end{aligned}$
I_{H}	High level input current		-		1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$
$I_{\text {D }}$	Supply current from V_{DD} (standby)		-	10	50	$\mu \mathrm{A}$	All inputs at 0 V , one Q output high
			-	10	50		All inputs at 0 V , all Q outputs low
$I_{B B}$	Supply current from V_{BB}		-	0.05	0.1	mA	All outputs low, all Q outputs open
			-	0.05	0.1		All outputs high, all Q outputs open

[^1]
AC Electrical Characteristics

(Timing requirements over recommended operating conditions)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{t}_{\mathrm{W}(\mathrm{CKH})}$	Pulse duration, clock high	100	-	-	ns	---
$\mathrm{t}_{\mathrm{W}(\mathrm{LEH})}$	Pulse duration, latch enable high	100	-	-	ns	---
$\mathrm{t}_{\mathrm{SU(D)}}$	Setup time, data before clock	50	-	-	ns	---
$\mathrm{t}_{\mathrm{H}(\mathrm{D})}$	Hold time, data after clock	50	-	-	ns	---
$\mathrm{t}_{\mathrm{CKH-LEH}}$	Delay time, clock to latch enable high	50	-	-	ns	---
$\mathrm{t}_{\text {PD }}{ }^{*}$	Propagation delay time, latch enable to output	-	0.3	-	ns	---

* Switching characteristics, $V_{B B}=60 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$

Switching Waveforms

Input Timing

Output Switching Times

Timing Diagram

Clock			
Data In	VALID	IRRELEVANT	
SR Contents	INVALID	VALID	
Latch Enable			
Latch Contents	PREVIOUSLY STORED DATA		NEW DATA VALID
Blanking			
Q Outputs			

Input and Output Equivalent Circuits

Functional Block Diagram

> Logic Diagram (positive logic)

Function Table

Serial Data Input	Clock Input	Shift Register Contents $I_{1} I_{2} I_{3} \ldots \ldots I_{N-1} I_{N}$	Serial Data Output	Strobe Input	Latch Contents $\begin{array}{llllll} I_{1} & I_{2} & I_{3} & \ldots & I_{N-1} & I_{N} \end{array}$	Blanking Input	Output Contents $\begin{array}{lllllllll} I_{1} & I_{2} & I_{3} & \ldots & I_{N-1} & I_{N} \end{array}$
H	\square	$H R_{1} \mathrm{R}_{2} \ldots \mathrm{R}_{\mathrm{N}-2} \mathrm{R}_{\mathrm{N}-1}$	$\mathrm{R}_{\mathrm{N}-1}$	---	---	---	---
L	\square	$L R_{1} \mathrm{R}_{2} \ldots \mathrm{R}_{\mathrm{N}-2} \mathrm{R}_{\mathrm{N}-1}$	$\mathrm{R}_{\mathrm{N}-1}$				
X	\square	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3} \ldots \mathrm{R}_{\mathrm{N}-1} \mathrm{R}_{\mathrm{N}}$	R_{N}				
---	---	X $\times \times \ldots \times \times$	X	L	$\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3} \ldots \mathrm{R}_{\mathrm{N}-1} \mathrm{R}_{\mathrm{N}}$		
		$\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots \mathrm{P}_{\mathrm{N}-1} \mathrm{P}_{\mathrm{N}}$	P_{N}	H	$\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots \mathrm{P}_{\mathrm{N}-1} \mathrm{P}_{\mathrm{N}}$	L	$\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \ldots \mathrm{P}_{\mathrm{N}-1} \mathrm{P}_{\mathrm{N}}$
		---	---	---	X $\times \times \ldots \times \times$	H	L L L ... L L

Pin Descriptions

HV6810 20-J Lead PLCC (PJ)

Pin	Function	Description
1	Q8	High voltage output.
2	Q7	
3	Q6	
4	CLOCK	Input data are shifted into the data shift register on the thepostive edge of the clock.
5	N/C	No connection.
6	VSS	Usually $\mathrm{V}_{\text {ss }}=0$, ground connection.
7	VDD	Low voltage power supply.
8	LE (STROBE)	When LE is high, data is transferred from data shift register to the Q output latch. When LE is low, data is latched into data latches and new data can be clocked into the shift register.
9	Q5	High voltage output.
10	Q4	
11	Q3	
12	Q2	
13	Q1	
14	BLANKING	When blanking is low, all Q's are forced to a high state, regardless of data in each channel. When OL is low, all Q's are forced to a low state, regardless of data in each channel.
15	DATA IN	Input data for the input shift register.
16	N/C	No connection.
17	VBB	High voltage power supply.
18	SERIAL DATA OUT	Output data from the shift register.
19	Q10	High voltage output.
20	Q9	

Pin Descriptions

HV6810 20-Lead SOW (WG)

Pin	Function	
1	Q8	High voltage output.
2	Q7	
3	Q6	
4	CLOCK	Input data are shifted into the data shift register on the thepostive edge of the clock.
5	VSS	Usually $\mathrm{V}_{\text {ss }}=0$, ground connection.
6	N/C	No connection.
7	VDD	Low voltage power supply.
8	LE (STROBE)	When LE is high, data is transferred from data shift register to the Q output latch. When LE is low, data is latched into data latches and new data can be clocked into the shift register
9	Q5	High voltage output.
10	Q4	
11	Q3	
12	Q2	
13	Q1	
14	BLANKING	When blanking is low, all Q's are forced to a high state, regardless of data in each channel. When OL is low, all Q's are forced to a low state, regardless of data in each channel.
15	DATA IN	Input data for the input shift register.
16	VBB	High voltage power supply.
17	SERIAL DATA OUT	Output data from the shift register.
18	N/C	No connection.
19	Q10	High voltage output.
20	Q9	

20-J Lead PLCC Package Outline (PJ)

.353x.353in body, .180in height (max.), .050in pitch

Top View

Side View

Note 1:
A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbol		A	A1	A2	b	b1	D	D1	E	E1	e
Dimension (inches)	MIN	. 165	. 090	. 062	. 013	. 026	. 385	. 350	. 385	. 350	$\begin{aligned} & .050 \\ & \text { BSC } \end{aligned}$
	NOM	. 172	. 105	-	-	-	. 390	. 353	. 390	. 353	
	MAX	. 180	. 120	. 083	. 021	. 032	. 395	. 356	. 395	. 356	

JEDEC Registration MS-018, Variation AA, Issue A, June, 1993.
Drawings not to scale.

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888•FAX: (408) 222-4895•www.supertex.com

20-Lead SOW (Wide Body) Package Outline (WG)

$12.80 \times 7.50 \mathrm{~mm}$ body, 2.65 mm height (max), 1.27 mm pitch

Note 1:
This chamfer feature is optional. If it is not present, then a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbol		A	A1	A2	b	D	E	E1	e	h	L	L1	L2	θ	01
Dimension (mm)	MIN	2.15	0.10	2.05	0.31	12.60	9.97	7.40	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.25	0.40	$\begin{aligned} & 1.40 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	-	-	12.80	10.30	7.50		-	-			-	-
	MAX	2.65	0.30	2.55	0.51	13.00	10.63	7.60		0.75	1.27			8°	15°

JEDEC Registration MS-013, Variation AC, Issue E, Sep. 2005.
Drawings not to scale.
(The package drawings in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^2]
[^0]: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 ## Notes:

 (1) All voltages are referenced to $V_{S S}$.
 (2) For operation above $25^{\circ} \mathrm{C}$ ambient derate linearly to $85^{\circ} \mathrm{C}$ at $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^1]: * All typical values are at $T_{A}=25^{\circ} \mathrm{C}$ except for I_{0}.

[^2]:

 product specifications, refer to the Supertex website: http//www.supertex.com.

