

DI2CS

I²C Bus Interface - Slave ver 3.02

OVERVIEW

I²C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data transmission over a short distance between many devices. The DI2CS core provides an interface between a microprocessor /microcontroller and an I²C bus. It can works as a slave transmitter or slave receiver depending on working mode determined by a master device. The DI2CS core incorporates all features required by the latest I²C specification including clock synchronization, arbitration and High-speed transmission mode. The DI2CS supports all the transmission speed modes.

KEY FEATURES

- Conforms to v.2.1 of the I²C specification
- Slave operation
 - Slave transmitter
 - Slave receiver
- Supports 3 transmission speed modes
 - Standard (up to 100 kb/s)
 - Fast (up to 400 kb/s)
 - High Speed (up to 3,4 Mb/s)
- Allows operation from a wide range of input clock frequencies
- Simple interface allows easy connection to microprocessor/microcontroller devices
- Interrupt generation
- User-defined data setup time

All trademarks mentioned in this document are trademarks of their respective owners.

- Fully synthesizable
- Static synchronous design with positive edge clocking and synchronous reset
- No internal tri-states
- Scan test ready

APPLICATIONS

- Embedded microprocessor boards
- Consumer and professional audio/video
- Home and automotive radio
- Low-power applications
- Communication systems
- Cost-effective reliable automotive systems

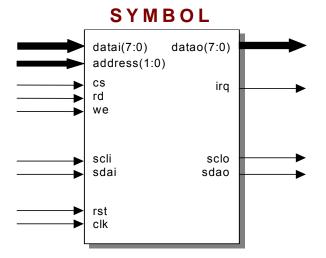
DELIVERABLES

- Source code:
 - ♦ VHDL Source Code or/and
 - ♦ VERILOG Source Code or/and
 - ♦ Encrypted, or plain text EDIF netlist
- VHDL & VERILOG test bench environment
 - Active-HDL automatic simulation macros
 - ModelSim automatic simulation macros
 - Tests with reference responses
- Technical documentation
 - ◊ Installation notes
 - HDL core specification
 - ◊ Datasheet
- Synthesis scripts
- Example application
- Technical support

http://www.DigitalCoreDesign.com http://www.dcd.pl

- ◊ IP Core implementation support
- ♦ 3 months maintenance
 - Delivery the IP Core updates, minor and major versions changes
 - Delivery the documentation updates
 - Phone & email support

LICENSING

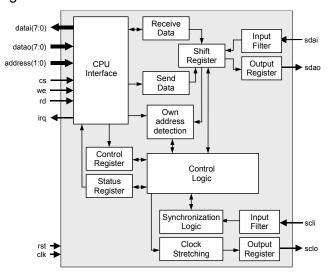

Comprehensible and clearly defined licensing methods without royalty fees make using of IP Core easy and simply.

<u>Single Design</u> license allows use IP Core in single FPGA bitstream and ASIC implementation.

<u>Unlimited Designs</u>, <u>One Year</u> licenses allow use IP Core in unlimited number of FPGA bitstreams and ASIC implementations.

In all cases number of IP Core instantiations within a design, and number of manufactured chips are unlimited. There is no time restriction except <u>One Year</u> license where time of use is limited to 12 months.

- · Single Design license for
 - VHDL, Verilog source code called <u>HDL</u> Source
 - Encrypted, or plain text EDIF called <u>Netlist</u>
- One Year license for
 - Encrypted Netlist only
- Unlimited Designs license for
 - HDL Source
 - Netlist
- Upgrade from
 - HDL Source to Netlist
 - Single Design to Unlimited Designs



PINS DESCRIPTION

PIN	TYPE	DESCRIPTION					
clk	input	Global clock					
rst	input	Global reset					
address(1:0)	input	Processor address lines					
cs	input	Chip select					
we	input	Processor write strobe					
rd	input	Processor read strobe					
scli	input	I ² C bus clock line (input)					
sdai	input	I ² C bus data line (input)					
datai(7:0)	input	Processor data bus (input)					
datao(7:0)	output	Processor data bus (output)					
sclo	output	I ² C bus clock line (output)					
sdao	output	I ² C bus data line (output)					
irq	output	Processor interrupt line					

BLOCK DIAGRAM

Figure below shows the DI2CS IP Core block diagram.

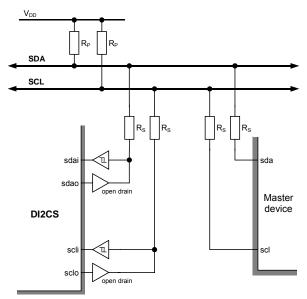
CPU Interface – Performs the interface functions between DI2CS internal blocks and microprocessor. Allows easy connection of the core to a microprocessor/microcontroller system.

Control Logic – Manages execution of all commands sent via interface. Synchronizes internal data flow.

Shift Register – Controls SDA line, performs data and address shifts during the data transmission and reception.

Control Register – Contains five control bits used for performing all types of I²C Bus transmissions.

Status Register – Contains seven status bits that indicates state of the I²C Bus and the DI2CS core.


Input Filter – Performs spike filtering.

Synchronization Logic – Performs DI2CS core synchronization.

Clock Stretching – Performs I²C SCL clock stretching when DI2CS core is not ready for next transmission.

IMPLEMENTATION

Figure below show the typical DI2CS implementations in system with Standard/Fast and High-speed devices.

PERFORMANCE

The following table gives a survey about the Core area and performance in the ALTERA® devices after Place & Route (all key features have been included):

Device	Speed grade	Logic Cells	F _{max}			
MERCURY	-5	170	250 MHz			
STRATIX	-5	170	260 MHz			
CYCLONE	-6	170	220 MHz			
APEX II	-7	170	270 MHz			
APEX20KC	-7	170	150 MHz			
APEX20KE	-1	170	120 MHz			
APEX20K	-1	170	90 MHz			
ACEX1K	-1	170	107 MHz			
FLEX10KE	-1	170	107 MHz			
MAX 7000AE	-5	83	96 MHz			
MAX 3000A	-5	83	104 MHz			

Core performance in ALTERA® devices

The main features of each Digital Core Design I²C compliant cores have been summarized in table below. It gives a briefly member characterization helping user to select the most suitable IP Core for its application.

Design	I ² C specification version	Master operation	Slave operation	CPU interface	Passive device interface	Interrupt generation	Clock synchronization	Arbitration	7-bit addressing	10-bit addressing	Standard mode	Fast mode	High-speed mode	User defined timing	Spike filtering
DI2CM	3.0	\	-	\	-	\checkmark	\checkmark	\	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
DI2CS	2.1	1	\checkmark	<	-	✓	\checkmark	-	\checkmark	-	✓	✓	\checkmark	\checkmark	\checkmark
DI2CSB	2.1	-	\checkmark	-	√	-	-	-	√	-	\checkmark	✓	\checkmark	-	\checkmark

L'C cores summary table

CONTACTS

For any modification or special request please contact to Digital Core Design or local distributors.

Headquarters:

Wroclawska 94

41-902 Bytom, POLAND

e-mail: info@dcd.pl

tel. : +48 32 282 82 66 fax : +48 32 282 74 37

Distributors:

Please check http://www.dcd.pl/apartn.php