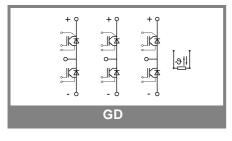
SKIM 380GD176DM

Trench IGBT Modules

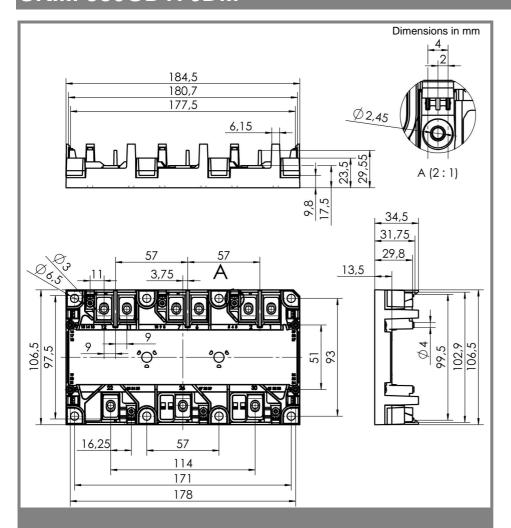
SKIM 380GD176DM

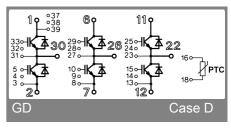

Target Data

Features

- · Homogeneous Si
- Trench = Trenchgate Technology
- · Low inductance case
- Isolated by AIN DCB (Direct Copper Bonded) ceramic plate
- Pressure contact technology for thermal contacts
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, limiting to 6x I_C
- Integrated temperature sensor
- Spring contact system to attach driver PCB to to the auxiliary terminals

Typical Applications


- AC inverter drives mains 575 -750 V AC
- public transport (auxiliary syst.)



Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise s	c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT		·	·					
V_{CES}		1700	V					
I _C	T _s = 25 (70) °C	425 (325)	Α					
I _{CRM}	$t_p = 1 \text{ ms}$	750	Α					
V_{GES}	·	± 20	V					
$T_j (T_{stg})$		-40 150 (125)	°C					
T _{cop}	max. case operating temperature	125	°C					
V _{isol}	AC, 1 min.	3300	V					
Inverse diode								
I _F	T _s = 25 (70) °C	380 (285)	Α					
I _{FRM}	$t_p = ms$	750	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	3300	Α					

Characte	eristics T _o	_c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT					•
$V_{GE(th)}$	$V_{GE} = V_{CE}$; $I_C = 18 \text{ mA}$	5,15	5,8	6,45	V
I _{CES}	$V_{GE} = 0; V_{CE} = V_{CES};$ $T_i = 25 °C$			0,3	mA
V_{CEO}	T _i = 25 (125) °C			1,2 (1,1)	V
r_{CE}	T _j = 25 (125) °C			3,3 (4,8)	$m\Omega$
V_{CEsat}	I _{Cnom} = 375 A; V _{GE} = 15 V,	1,6	2 (2,4)	2,45	V
	T _j = 25 (125) °C on chip level				
C _{ies}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		33		nF
C _{oes}	$V_{GE} = 0; V_{CE} = 25 \text{ V}; f = 1 \text{ MHz}$		1,4		nF
C _{res}	$V_{GE} = 0; V_{CE} = 25 V; f = 1 MHz$		1,1		nF
L _{CE}				20	nH
R _{CC'+EE'}	resistance, terminal-chip T _c = 25 (125) °C		0,9 (1,1)		mΩ
t _{d(on)}	V _{CC} = 1200 V				ns
t _r	I _{Cnom} = 375 A				ns
t _{d(off)}	$R_{Gon} = R_{Goff} = \Omega$				ns
t _f	T _j = 125 °C				ns
E _{on} (E _{off})	V _{GE} ± 15 V		225 (150)		mJ
$E_{on}(E_{off})$	with SKHI 65; T _j = 125 °C				mJ
	V _{CC} = 1200 V; I _C = 375 A				
Inverse o	liode				
$V_F = V_{EC}$	I _{Fnom} = 375 A; V _{GE} = 0 V; T _i = 25 (125) °C				V
V_{TO}	T _i = 25 (125) °C				V
r _T	T _j = 25 (125) °C				mΩ
I _{RRM}	I _F = 375 A; T _j = 25 °C				Α
Q_{rr}	V _{GE} = 0 V di/dt = A/μs				μC
E _{rr}	$R_{Gon} = R_{Goff} =$				mJ
	characteristics				
$R_{th(j-s)}$	per IGBT			0,09	K/W
$R_{th(j-s)}$	per FWD			0,14	K/W
Tempera	ture Sensor				
R _{TS}	T = 25 (125) °C		1 (1,67)		kΩ
tolerance	T = 25 (125) °C		3 (2)		%
Mechani	cal data				•
M_1	to heatsink (M5)	2		3	Nm
M_2	for terminals (M6)	4		5	Nm
W				460	g

SKiM 380GD176DM

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.