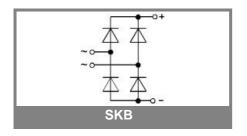
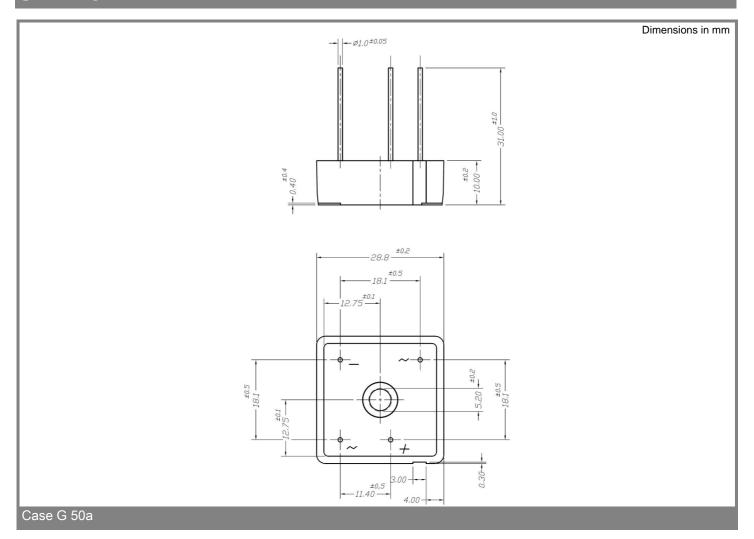


V_{RSM}, V_{RRM}	V _{VRMS}	$I_D = 18 \text{ A } (T_c = 75 ^{\circ}\text{C})$	C _{max}	R_{min}
V	V	Types	μF	Ω
200	60	SKB 26/02		0,15
400	125	SKB 26/04		0,3
600	185	SKB 26/06		0,4
800	250	SKB 26/08		0,5
1000	310	SKB 26/10		0,65
1200	380	SKB 26/12		0,75
1400	440	SKB 26/14		0,9
1600	500	SKB 26/16		1

Power Bridge Rectifiers

SKB 26


Features


- Square plastic case with isolated metal base plate and wire leads
- Ideal for printed circuit boards
- Blocking voltage up to 1600 V
- High surge currents
- Notch moulded in casing for easy polarity identification
- · Easy chassis mounting

Typical Applications

- Single phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- · Battery charge rectifiers
- Recommended snubber network: RC: $0.1 \mu F$, 50Ω (P _R = 1 W)
- Soldered directly onto a p.c.b. of 100 x
 160 mm with tinned tracking of min. 2.5
- 2) Mounted on a painted metal sheet of min.250 x 250 x 1 mm

Symbol	Conditions	Values	Units
I _D	T _a = 45 °C, isolated ¹⁾	3,5	Α
	T _a = 45 °C, chassis ²⁾	10	Α
I _{DCL}	T _a = 45 °C, isolated ¹⁾	3	Α
	T _a = 45 °C, chassis ²⁾	9,5	Α
	T _a = 45 °C, P1A/120	14	Α
I _{FSM}	T _{vi} = 25 °C, 10 ms	370	Α
	T _{vi} = 150 °C, 10 ms	320	Α
i²t	T _{vj} = 25 °C, 8,3 10 ms	680	A²s
	T _{vj} = 150 °C, 8,3 10 ms	500	A²s
V _F	T _{vi} = 25°C, I _F = 150 A	max. 2,2	V
V _(TO)	T _{vj} = 150°C	max. 0,85	V
r _T	T _{vj} = 150°C	max. 12	mΩ
I_{RD}	$T_{vj} = 25$ °C, $V_{RD} = V_{RRM}$	300	μA
	$T_{vj}^{3} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$		μA
I_{RD}	$T_{vj} = 150$ °C, $V_{RD} = V_{RRM}$	5	mA
	$T_{vj}^{\circ} = {^{\circ}C}, V_{RD} = V_{RRM} \ge V$		mA
t _{rr}	$T_{vj} = 25$ °C	10	μs
f_G		2000	Hz
R _{th(j-a)}	isolated ¹⁾	15	K/W
	chassis ²⁾	4,7	K/W
R _{th(j-c)}	total	1,9	K/W
R _{th(c-s)}	total	0,15	K/W
T _{vi}		- 40 + 150	°C
T _{stg}		- 55 + 150	°C
V _{isol}	a. c. 50 60 Hz; r.m.s.; 1 s / 1 min.	3000 / 2500	V~
M _s	to heatsink	2 ± 15 %	Nm
M _t			Nm
a			m/s²
w		20	g
Fu			А
Case		G 50a	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.