

Genesys Logic, Inc.

GL9701

PCI ExpressTM to PCI Bridge

Datasheet Revision 0.90 Sep. 05, 2006

Copyright:

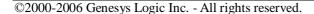
Copyright © 2006 Genesys Logic Incorporated. All rights reserved. No part of the materials may be reproduced in any form or by any means without prior written consent of Genesys Logic Inc..

Disclaimer:

ALL MATERIALS ARE PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NO LICENSE OR RIGHT IS GRANTED UNDER ANY PATENT OR TRADEMARK OF GENESYS LOGIC INC.. GENESYS LOGIC HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS IN REGARD TO MATERIALS, INCLUDING ALL WARRANTIES, IMPLIED OR EXPRESS, OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY. IN NO EVENT SHALL GENESYS LOGIC BE LIABLE FOR ANY DAMAGES INCLUDING, WITHOUT LIMITATION, DAMAGES RESULTING FROM LOSS OF INFORMATION OR PROFITS. PLEASE BE ADVISED THAT THE MATERIALS MAY CONTAIN ERRORS OR OMMISIONS. GENESYS LOGIC MAY MAKE CHANGES TO THE MATERIALS OR TO THE PRODUCTS DESCRIBED THEREIN AT ANY TIME WITHOUT NOTICE.

Trademarks:

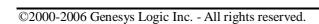
GENESYS is a registered trademark of Genesys Logic, Inc. All trademarks are the properties of their respective owners.


Office:

Genesys Logic, Inc.

12F, No. 205, Sec. 3, Beishin Rd., Shindian City,

Taipei, Taiwan


Tel: (886-2) 8913-1888 Fax: (886-2) 6629-6168 http://www.genesyslogic.com

Revision History

Revision	Date	Description	
0.90	2006/09/05	First formal release	

TABLE OF CONTENTS

CHAPTER 1 GENERAL DESCRIPTION	9
CHAPTER 2 FEATURES	. 10
2.1 PCI Express Features	. 10
2.2 PCI INTERFACE FEATURES	. 10
2.3 POWER MANAGEMENT	. 10
2.4 SMBUS INTERFACE	. 11
CHAPTER 3 PIN ASSIGNMENT	. 12
3.1 PIN CONFIGURATION	. 12
3.2 PINOUT	. 13
3.3Numeric Pin Assignment List	. 14
3.4 SIGNAL DESCRIPTION	. 16
3.4.1 PCI-Express Interface	. 16
3.4.2 Secondary PCI Interface	. 17
3.4.3 EEPROM Signals	. 18
3.4.4 Miscellaneous Signals	. 18
3.4.5 Power and Ground Signals	. 19
CHAPTER 4 BLOCK DIAGRAM	
CHAPTER 5 FUNCTION DESCRIPTION	. 24
5.1 POWER MANAGEMENT	. 24
5.1.1 PCI-PM Software Compatible Power Management	
5.1.2 Hardware-Controlled Active State Power Management	
5.1.3 In-band Beacon	. 24
5.1.4 Side-band WAKE_N	. 25
5.1.5 Power Management System Messages	. 25
5.2 PCI CLOCK RUN	. 25
5.3 PCI CLOCK	. 25
5.4 Interrupt mapping	. 26
5.5 INITIAL FLOW CONTROL ADVERTISEMENTS	. 27
5.6 IDSEL MAPPING	. 28
CHAPTER 6 REGISTER DESCRIPTION	. 29
6.1 Offset 00h: Device Identification	. 34
6.2 OFFSET 04H: COMMAND REGISTER	. 34
6.3 Offset 06h: Status Register	. 35

6.4 Offset 08h: Revision ID	37
6.5 Offset 09h: Class Code	
6.6 OFFSET 0CH: CACHE LINE SIZE REGISTER	38
6.7 Offset 0dh: Primary Latency Timer Register	38
6.8 Offset 0eh: Header Type Register	38
6.9 Offset 0fh: Bist Register	38
6.10 Offset 10h: Base Register0	
6.11 Offset 14h: Base Register1	38
6.12 Offset 18h: Primary Bus Number Register	39
6.13 Offset 19h: Secondary Bus Number Register	39
6.14 Offset 1ah: Subordinate Bus Number Register	39
6.15 Offset 1bh: Secondary Latency Timer Register	39
6.16 OFFSET 1CH: IO BASE AND IO LIMIT REGISTER	39
6.17 OFFSET 1EH: SECONDARY STATUS REGISTER	40
6.18 Offset 20h: Memory Base and Limit Register	42
6.19 Offset 24h: Prefetchable M <mark>emory</mark> Base and Limit Register .	42
6.20 Offset 28h: Prefetchable Base Upper 32-bits Register	43
6.21 Offset 2ch: Prefetchable Limit Upper 32-bits Register	43
6.22 Offset 30h: IO Base and Limit Upper 16-bits Register	43
6.23 Offset 34h: Capabilities Pointer Register	43
6.24 Offset 3ch: Interrupt Line Register	44
6.25 Offset 3dh: Interrupt Pin Register	44
6.26 Offset 3eh: Bridge Control Register	44
6.27 Offset 70h: PCI Express Capability List Register	48
6.28 OFFSET 72H: PCI Express Capabilities Register	48
6.29 Offset 74h: PCI Express Device Capabilities Register	49
6.30 OFFSET 78H: PCI Express Device Control Register	49
6.31 Offset 7ah: PCI Express Device Status Register	50
6.32 Offset 7ch: PCI Express Link Capabilities Register	51
6.33 OFFSET 80H: PCI EXPRESS LINK CONTROL REGISTER	52
6.34 OFFSET 82H: PCI EXPRESS LINK STATUS REGISTER	52
6.35 Offset 94h: PM Capability ID Register	53
6.36 OFFSET 95H: PM NEXT POINTER REGISTER	53
6.37 OFFSET 96H: POWER MANAGEMENT CAPABILITIES REGISTER	53

	6.38 OFFSET 98H: POWER MANAGEMENT CONTROL AND STATUS	
	REGISTER	. 54
	6.39 OFFSET A0H: SLOT NUMBERING CAPABILITIES ID REGISTER	. 54
	6.40 OFFSET A1H: SLOT NUMBERING POINTER TO NEXT ID REGISTER	. 55
	6.41 OFFSET A2H: SLOT NUMBERING EXPANSION SLOT REGISTER	. 55
	6.42 OFFSET A3H: SLOT NUMBERING CHASSIS NUMBER REGISTER	. 55
	6.43 OFFSET 100H: ADVANCED ERROR REPORTING ENHANCED	
	CAPABILITY HEADER REGISTER	. 55
	6.44 OFFSET 104H: UNCORRECTABLE ERROR STATUS REGISTER	
	6.45 OFFSET 108H: UNCORRECTABLE ERROR MASK REGISTER	. 56
	6.46 OFFSET 10CH: UNCORRECTABLE ERROR SEVERITY REGISTER	. 57
	6.47 OFFSET 110H: CORRECTABLE ERROR STATUS REGISTER	. 57
	6.48 OFFSET 114H: CORRECTABLE ERROR MASK REGISTER	. 57
	6.49 OFFSET 118H: ADVANCED ERROR CAPABILITIES AND CONTROL	
	REGISTER	. 58
	6.50 OFFSET 11CH: HEADER LOG REGISTER	
	6.51 OFFSET 12CH: SECONDARY UNCORRECTABLE ERROR STATUS	
	REGISTER	. 58
	6.52 Offset 130h: Secondary Uncorrectable Error Mask	
	REGISTER	. 59
	6.53 OFFSET 134H: SECONDARY UNCORRECTABLE ERROR SEVERITY	
	REGISTER	. 60
	6.54 OFFSET 138H: SECONDARY ERROR CAPABILITIES AND CONTROL	
	REGISTER	. 60
	6.55 OFFSET 13CH: SECONDARY HEADER LOG REGISTER	
	6.56 OFFSET 150H: DEVICE SERIAL NUMBER ENHANCED CAPABILITY	
	HEADER REGISTER	. 61
	6.57 OFFSET 154H: DEVICE SERIAL NUMBER REGISTER	. 61
C	CHAPTER 7 ELECTRICAL CHARACTERISTICS	. 62
	7.1 OPERATION CONDITIONS	. 62
	7.3 DIFFERENTIAL RECEIVER (RX) INPUT SPECIFICATION	. 68
	7.4 PCI INTERFACE DC SPECIFICATIONS	. 70
	7.5 PCI INTERFACE AC SPECIFICATIONS	. 71
	7.6 CLOCK AND RESET SPECIFICATIONS	. 72
C	CHAPTER 8 PACKAGE DIMENSION	. 74

CHAPTER 9 ORDERING INFORMATION......75

LIST OF FIGURES

FIGURE 3.1—PIN CONFIGURATION	 	12
FIGURE 3.2—PIN OUT DIAGRAM		
FIGURE 4.1 – GL9701 BLOCK DIAGRAM		21
FIGURE 6.1 – GL9701 CAPABILITIES	 	31
FIGURE 9.1—CL 0701 129 DIN L OFD DACKAGE		7/

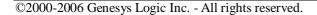

LIST OF TABLES

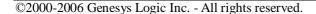
TABLE 3.1—SIGNAL TYPE	14
TABLE 4.1—SUPPORTED PCI COMMAND	
TABLE 6.1 — NOTATION FOR ATTRIBUTE	
TABLE 6.2—LEGACY CONFIGURATION SPACE	
TABLE 6.3—PCI EXPRESS EXTENDED CONFI	
TABLE 9.1 — ORDERING INFORMATION	

CHAPTER 1 GENERAL DESCRIPTION

PCI Express is a general-purpose interconnection technology to achieve high performance and flexibility at competitive cost for future computing and communication platforms. The GL9701 PCI Express to PCI Bridge provides a solution to connect PCI Express with existing PCI domain. This is referred to as a "PCI Express to PCI bridge" or simply as a "bridge", which features a PCI Express primary interface and a PCI secondary interface. A bridge can be used to enable existing PCI based application to plug into a PCI Express based system.

CHAPTER 2 FEATURES

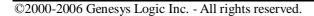
2.1 PCI Express Features


- Compliant to PCI Express Base Specification Revision 1.0a
- Compliant to PCI Express to PCI Bridge Specification Revision 1.0
- Support Single One-Lane PCI Express Connection
- Support 32-bit CRC Covering All Transmitted Data Packets
- Support 16-bit CRC On All Link Message Information
- Support PCI Express Advanced Error Reporting Capability
- Support Error Forwarding Including Data Poisoning and PCI Bus Parity Errors.
- Support 100MHz PCI Express Differential Reference Clock.
- Secondary Side Initialization via Type 0 Configuration Cycles
- Support Variable Payload Size (up to 512 bytes)
- Support Variable Size of Read Request (up to 512 bytes)

2.2 PCI Interface Features

- Compliant to PCI Local Bus Specification Revision 3.0
- Support PCI 32-bit, 33/66 MHz, 3.3V, NOT 5V tolerant
- Support Five External REQ/GNT Pairs For Internal Arbiter
- Support PCI LOCK Operation
- Support up to Two PCI Delayed Transaction (memory read, I/O read/write, and configuration read/write)
- Support Clock Run Operation
- Support Five 33MHz/66MHz PCI Clock Outputs

2.3 Power Management


- Support D0, D1, D2, D3hot and D3cold device power states defined in PCI Power Management Specification Rev 1.1
- Support PME event propagation on behalf of PCI devices
- Side-band WAKE# signals
- PCI Express Active Power Management states (ASPM): L0s and L1
- Support link power management: L0, L0s, L1, L2
- In-band beacon generation
- Integrated AUX Power Plane

2.4 SMBus Interface

- Compliant to System Management Bus Specification, Revision 2.0
- Support Slave-mode operation only
- Support configuration of PCI Express PHY via SMBus

CHAPTER 3 Pin Assignment

The "_N" symbol at the end of signal name indicates that the active (asserted) state occurs when the signal is at low voltage level. When "_N" is not present after the signal name, the signal is asserted at the high voltage level.

3.1 Pin Configuration

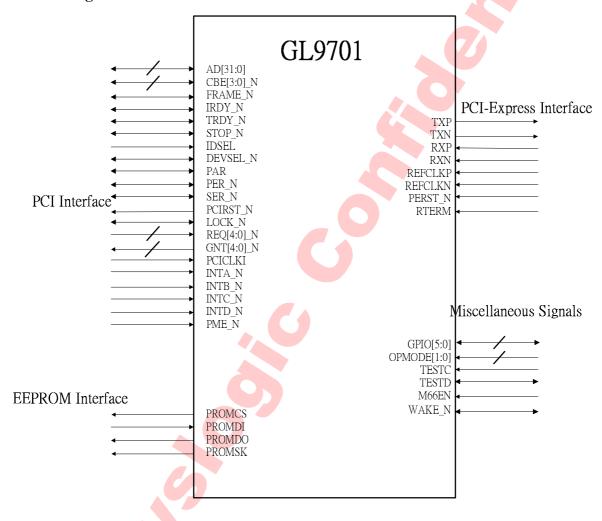
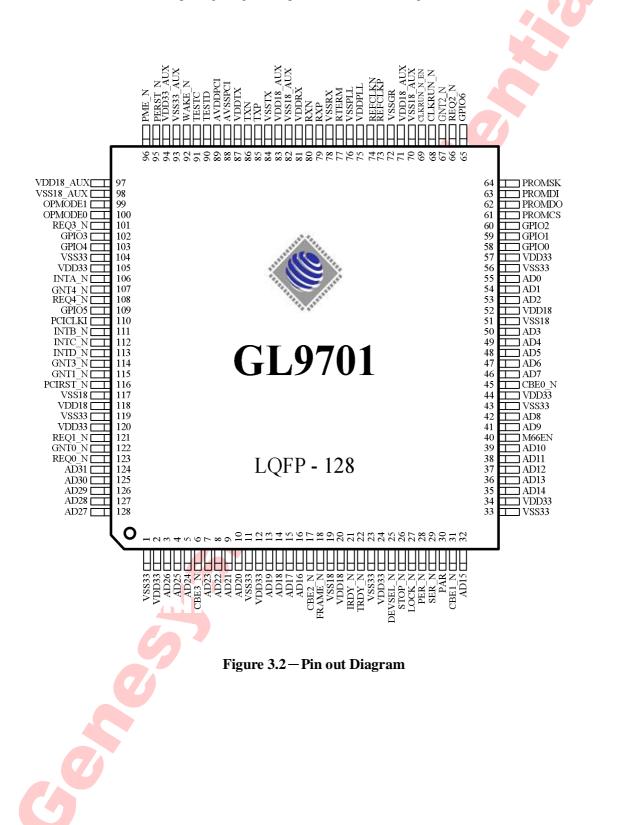



Figure 3.1—Pin Configuration

3.2 PinOut

GL9701 uses LQFP128 package. Figure 4.2 presents the Pin out Diagram of GL9701.

The following notations are used to describe signal type:

Signal Type	Description
I	Input pin.
0	Output pin
TS	Tri-state input/output pin.
STS	Sustained Tri-State is an active low tri-state Signal owned and driven by one and only one agent at a time.
P	Power pin
OD	Open Drain allows multiple devices to share as a wire-OR.
LVDO	Low-voltage differential output
LVDI	Low-voltage differential input

Table 3.1—Signal Type

3.3Numeric Pin Assignment List

Pin Number	Pin Name	Туре	Pin Number	Pin Name	Туре
1	VSS33	P	65	GPIO6	TS
2	VDD33	P	66	REQ2_N	I
3	AD26	TS	67	GNT2_N	О
4	AD25	TS	68	CLKRUN_N	I
5	AD24	TS	69	CLKRUN_N_EN	TS
6	CBE3_N	TS	70	VSS18_AUX	P
7	AD23	TS	71	VDD18_AUX	P
8	AD22	TS	72	VSSGR	P
9	AD21	TS	73	REFCLKP	LVDI
10	AD20	TS	74	REFCLKN	LVDI
11	VSS33	P	75	VDDPLL	P
12	VDD33	P	76	VSSPLL	P

13	AD19	TS	77	RTERM	I
14	AD18	TS	78	VSSRX	P
15	AD17	TS	79	RXP	LVDI
16	AD16	TS	80	RXN	LVDI
17	CBE2_N	TS	81	VDDRX	P
18	FRAME_N	STS	82	VSS18_AUX	P
19	VSS18	P	83	VDD18_AUX	P
20	VDD18	P	84	VSSTX	P
21	IRDY_N	STS	85	TXP	LVDO
22	TRDY_N	TS	86	TXN	LVDO
23	VSS33	P	87	VDDTX	P
24	VDD33	P	88	AVSSPCI	P
25	DEVSEL_N	STS	89	AVDDPCI	P
26	STOP_N	STS	90	TESTD	TS
27	LOCK_N	STS	91	TESTC	Ι
28	PER_N	TS	92	WAKE_N	DO
29	SER_N	OD	93	VSS33_AUX	P
30	PAR	TS	94	VDD33_AUX	P
31	CBE1_N	TS	95	PERST_N	I
32	AD15	TS	96	PME_N	I
33	VSS33	P	97	VDD18_AUX	P
34	VDD33	P	98	VSS18_AUX	P
35	AD14	TS	99	OPMODE1	I
36	AD13	TS	100	OPMODE0	I
37	AD12	TS	101	REQ3_N	I
38	AD11	TS	102	GPIO3	TS
39	AD10	TS	103	GPIO4	TS
40	M66EN	I	104	VSS33	P
41	AD9	TS	105	VDD33	P
42	AD8	TS	106	INTA_N	TS
43	VSS33	P	107	GNT4_N	0
44	VDD33	P	108	REQ4_N	I
45	CBE0_N	TS	109	GPIO5	TS

46	AD7	TS	110	PCICLKI	I
47	AD6	TS	111	INTB_N	I
48	AD5	TS	112	INTC_N	1
49	AD4	TS	113	INTD_N	I
50	AD3	TS	114	GNT3_N	0
51	VSS18	P	115	GNT1_N	О
52	VDD18	P	116	PCIRST_N	О
53	AD2	TS	117	VSS18	P
54	AD1	TS	118	VDD18	P
55	AD0	TS	119	VSS33	P
56	VSS33	P	120	VDD33	P
57	VDD33	P	121	REQ1_N	I
58	GPIO0	TS	122	GNT0_N	0
59	GPIO1	TS	123	REQ0_N	I
60	GPIO2	TS	124	AD31	TS
61	PROMCS	0	125	AD30	TS
62	PROMDO	0	126	AD29	TS
63	PROMDI	I	127	AD28	TS
64	PROMSK	0	128	AD27	TS

3.4 Signal Description

3.4.1 PCI-Express Interface

Name	Type	Description
TXP,	LVDO	Transmitter differential pair
TXN		
RXP,	LVDI	Receiver differential pair
RXN		
REFCLKP,	LVDI	100 MHz differential clock input
REFCLKN		
PERST_N	I	External reset, low active
RTERM	I	Connect to a resistor for calibration

3.4.2 Secondary PCI Interface

Name	Type	Description	
AD[31:0]	TS	Address/Data	
CBE[3:0]_N	TS	Command/Byte Enable	
FRAME_N	STS	Secondary PCI interface frame	
IRDY_N	STS	Secondary PCI interface initiator ready	
TRDY_N	STS	Secondary PCI interface target ready	
STOP_N	STS	Secondary PCI interface stop indicator	
DEVSEL_N	STS	Secondary PCI interface device select	
PAR	TS	Secondary PCI interface parity	
PER_N	STS	Secondary PCI interface parity error detect	
SER_N	OD	Secondary PCI interface system error	
PCIRST_N	О	Secondary PCI bus Reset	
LOCK_N	STS	Secondary PCI interface target ready	
REQ[4:0]_N	I	Requests 4-0, activated by the secondary bus masters to request the	
		use of the secondary bus.	
		REQ0_N is a dual-purpose signal. When the bridge's internal arbiter	
		is enabled, this signal is used as a request input, to be activated by a	
		secondary bus master requesting the use of the secondary bus. When	
		the internal arbiter is disabled, REQ0_N is used by the bridge as its	
		grant input signal.	
GNT[4:0]_N	О	Grants 4-0, activated by the bridge's internal arbiter to grant usage of	
		the secondary bus to the master that activated the corresponding	
		request signal.	
		GNT0_N is a dual-purpose signal. When the bridge's internal arbiter	
		is enabled, this signal is used as a grant output, activated by the bridge	
		to grant the use of the secondary bus to the master who requested the	
		use with the GNT0_N signal. When the internal arbiter is disabled,	
		this signal is used by the bridge as its request output signal.	
PCICLKI	I	PCI clock input.	
INTA_N,	I	Interrupt from secondary interface.	
INTB_N,			
INTC_N,			

INTD_N		
PME_N	I	Power management event from secondary interface
WAKE_N	OD	Used to implement wakeup mechanism.

3.4.3 EEPROM Signals

Name	Type	Description	
PROMCS	О	Enable EEPROM interface	
PROMDO	О	Serial data output for EEPROM	
PROMDI	I	Serial data input from EEPROM	
PROMSK	О	Serial clock output for EEPROM	

3.4.4 Miscellaneous Signals

Name	Type	Description
GPIO[6:0]	TS	The output signals are determined by OPMODE[1:0],
		PCICLKx_MASK(x=0~5) in design option.
		•For GPIO[2:0]:
		Available only in normal mode. (OPMODE[1:0]=2'b00)
		■ If PCICLKx_MASK (x=0~2) are not masked (=1'b0), then
		these three bits are used as PCI clock outputs. It's recommended
		that GPIO[0] be routed to PCICLKI input.
		■ If PCICLKx_MASK (x=0~2) are masked (=1'b1) then these
		three bits are used as output of GPIO signal from design option.
		•For GPIO[5:3]:
		• If in normal function mode (OPMODE[1:0]=2'b00), then these
		three bits are used as PCI clock outputs when
		PCICLKx_MASK(x=5~3) are not masked (=1'b0). These three
		bits are used as GPIO output from design option if
		PCICLKx_MASK(x=5~3) are masked (=1'b1).
	7/	• If in test mode (OPMODE[1:0]=2'b01), then these three bits are
		used as internal signal output.
		•For GPIO[6]:
		• If in normal function mode (OPMODE[1:0]=2'b00), the bit is
		used as GPIO pins. Users can specify the output value and

		output enable via design option. Users can also probe the input	
		value by reading the design option.	
		• If in normal function (OPMODE[1:0]=2'b01), then this bit is	
		used as internal signal output.	
OPMODE[1:0]	I	Operation mode setup	
TESTC	I	Test clock	
TESTD	TS	Test data	
CLKRUN_N	TS	A PCI device can request GL9701 to start, speed up, or maintain the	
		PCI clock by the assertion of CLKRUN_N. GL9701 is responsible	
		for maintaining CLKRUN_N asserted, and for driving it high to the	
		de-asserted state.	
CLKRUN_N_E	I	Clock Run Enable	
N		1'b1: Enable Clock Run	
		1'b0: Disable Clock Run	
M66EN	I	Enable PCI clock act as 33MHz or 66MHz.	
		1: PCI Clocks are 66MHz.	
		0: PCI clocks are 33MHz	

3.4.5 Power and Ground Signals

Name	Type	Description	
VSS33	P	Ground for PCI PAD	
VDD33	P	3.3V Power Supplier for PCI PAD	
VSS18_AUX	P	Ground for 1.8 Vaux	
VDD18_AUX	P	1.8Vaux Power Supplies for core voltage	
VSS33_AUX	P	Ground for 3.3 Vaux	
VDD33_AUX	P	3.3 Vaux Power Supplies for core voltage	
VSS18	P	Digital ground	
VDD18	P	1.8V Power Supplies for core voltage	
VSSGR	P	Ground for the guard ring of the SerDes block	
VDDPLL	P	1.8V Power Supplies for internal PLL	
VSSPLL	P	Ground for internal PLL	
VSSRX	P	1.8V Power Supplies for receiver part	
VDDRX			

VSSTX VDDTX	Р	1.8V Power Supplies for transceiver part	
AVSSPCI AVDDPCI	P	1.8V Power Supplier for PCI PLL	

CHAPTER 4 Block Diagram

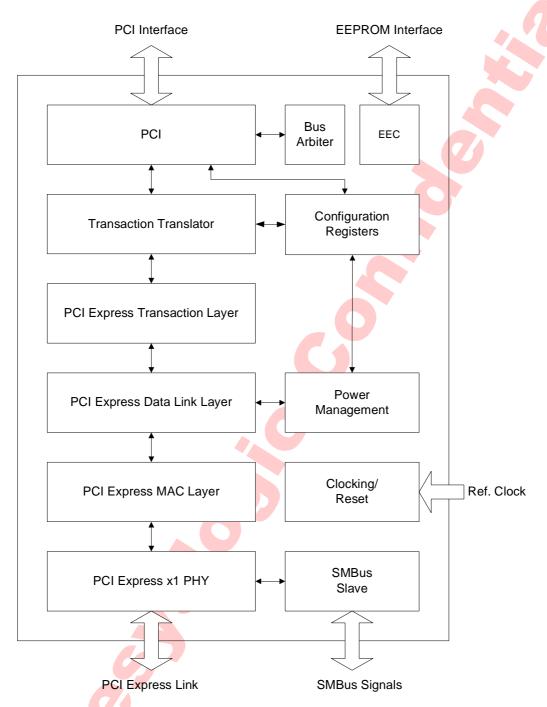


Figure 4.1 – GL9701 block diagram

The GL9701 is composed of the following major functional blocks as shown in Figure 3-1:

PCI interface macro

The macro acts as either a bus master or a bus slave and handles the PCI protocol depending on the transaction types. GL9701 supports 32-bit PCI addressing with 0MHz~33MHz and 66MHz operation frequency.

Table 3.1 summarizes the PCI commands supported by GL9701

Command Type	Encoding
I/O Read	0010
I/O Write	0011
Memory Read	0110
Memory Write	0111
Configuration Read	1010
Configuration Write	1011
Memory Read Multiple	1100
Memory Read Line	1110
Memory Write and	1111
Invalidate	

Table 4.1—Supported PCI Command

• Bus Arbiter

This block supports PCI bus arbiter for secondary PCI bus. The bus arbitration is provided by GL9701 and supports up to five external masters. The arbiter can be disabled by external EEPROM.

• Configuration Registers

This module supports two mechanisms for configuration space access: PCI compatible and PCI Express enhanced configuration mechanism.

• Power Management

The moudle is in charge of power management event signaling. This module enables GL9701 to enter software driven D-state transitions.

• Transaction Translator

The Transaction Translator manages all the bridge operation between PCI Express and PCI interface. It is responsible for PCI Express to PCI command translation, message translation and managing transaction ordering.

• PCI Express Transaction Layer

The layer's function is the assembly and disassembly of Transaction Layer Packets (TLPs). It is also responsible for managing credit-based flow control for TLPs.

• PCI Express Data Link Layer

The layer serves as an intermediate stage between the Transaction Layer and the Physical Layer. The responsibility is Link management and data integrity including error detection and error correction.

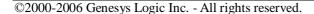
• PCI Express MAC Layer

The Layer can be taken as a part of Physical Layer. It includes link initialization, link state management, lane alignment, data scrambling and descrambling.

PCI Express x1 PHY

The PHY includes all circuitry for interface operation for an x1 link, including driver and input buffers, parallel-to-serial and serial-to-parallel conversion, PLL(s) and impedance matching circuitry. It also includes logical function related to 8b/10b encoding/decoding and PHY status report.

• SMBus Slave


The SMBus Slave handles SMBus protocol and provides the access to internal registers such as chip information, function options and some test setting.

• EEC, EERPOM Controller

Provide a download path for chip configuration and information.

• Clocking/Reset

Provide a clocking and reset to manage all blocks.

CHAPTER 5 Function Description

5.1 Power Management

GL9701 supports PCI-PM 1.1 Compatible Power Management and Active State Power Management (ASPM) defined in PCI Express Base Specification Revision 1.0a.

5.1.1 PCI-PM Software Compatible Power Management

GL9701 supports link states L0, L1 and L2 needed to implement PCI-PM compatible power states D0, D1, D2 and D3hot. All link states are determined by the D-state of the bridge. Because GL9711 provides Vaux, bridge will enter into L2 state when software direct bridge into D3hot state. Refer to the *PCI Express Base Specification Revision 1.0a* for more protocol information involved in transitioning the link to the L1 or L2 state.

5.1.2 Hardware-Controlled Active State Power Management

GL9701 supports a hardware-initiated power management mechanism which is called Active State Power Management (ASPM). Once this feature is enabled, bridge will drive the link state into a low-power L0s link state or even lower-power L1 link state. Refer to the PCI Express Base Specification Revision 1.0a for more information about ASPM.

Once system software enables GL9701's ASPM capability by setting the ASPM Control bit of Link Control Register to high, GL9701 will behavior ASPM specified in PCI Express Base Specification Revision 1.0a by default. However, GL9701 can disable this mechanism via the optional setting specified in table6.1. The optional bit is the 30th bit of Configuration Space Register with offset 'hc8. If this bit is set to low, then GL9701 will never act ASPM behavior no matter what value of the ASPM Control bit of Link Control Register.

5.1.3 In-band Beacon

Beacon is a in-band signal used to exit the L2 link power management state and informs the Root Complex to re-activate the link. When the bridge is directed into D3hot State, the link state will finally stay in L2 State. The device on the secondary PCI bus wakes up the system by asserting PME_N. GL9701 then outputs the beacon signal on the upstream PCI Express link. Root complex should re-apply the power and reference clock again after detecting the beacon.

5.1.4 Side-band WAKE_N

GL9701 supports two means to signal the platform to re-establish the power and reference clock while the bridge is placed into D3hot state. One is Beacon, and the other is WAKE_N. WAKE_N.

WAKE_N is a side-band signal and is low active. Similar with Beacon, the bridge only outputs WAKE_N when the bridge detects PME_N asserted by the device on the secondary PCI bus when the bridge is placed into D3hot state.

5.1.5 Power Management System Messages

GL9701 supports all messages involved in the Power Management. GL9701 either initiates or receives them. Table5-1 outlines their characteristics.

Packet	Туре
PM_Enter_L1	DLLP
PM_Enter_L23	DLLP
PM_Active_State_Request_L1	DLLP
PM_Request_Ack	DLLP
PM_Active_State_Nak	TLP
PM_PME	TLP
PME_Turn_Off	TLP
PME_TO_Ack	TLP

5.2 PCI Clock Run

GL9701 supports Clock Run functionality specified in *PCI Mobile Design Guide v1.1*. CLKRUN_N is an optional signal used by devices to request starting (or speeding up) the clock. A device requests the central resource to start, speed up, or maintain the PCI clock by the assertion of CLKRUN_N. The central resource is responsible for maintaining CLKRUN_N asserted, and for driving it high to the de-asserted state.

Clock Run functionality in GL9701 can be enabled by the asserting CLKRUN_N_EN (PIN69) to high. When the function is enabled, GL9701 plays the role of central resource. There is a ODT inside the CLKRUN_N (PIN68), so there is no need to add an external pull up resistor on the CLKRUN_N.

5.3 PCI Clock

GL9701 supports five PCI slots on the secondary PCI interface. To provide the devices on these slots and GL9701 itself can work properly, GL9701 provides six PCI clock sources.

The operational frequency of these PCI clocks can be configured by M66EN (PIN40). When it's set to high, then the PCI clocks will operate at 66MHz. When it's set to low, then these clocks will operate at 33MHz.

The six clock output are at GLIO0 ~ GPIO5. It's recommended that GPIO0 be connected to PCICLKI (PIN110) to feed GL9701 itself. GPIO1 ~ GPIO5 then can be distributed to the five PCI slots. Users may optionally implement the number of PCI slots greater than one and less than five. Users can even use an external PCI clock source to maintain the normal operation of GL9701 and its secondary PCI slots.

If not all the five PCI slots are utilized, users can use the GPIOx ($x=1\sim5$, 0 is valid when an external PCI clock source is provided) for the use of General Purpose I/O. The optional use between PCI clock source and GPIO can be determined by the PCICLK_MASKx ($x=0\sim5$).

When PCICLK_MASKx (x=0~5) is set, the PCI clock output of the corresponding GPIOx is masked. The GPIOx then becomes a General Purpose I/O. Users then can arbitrarily specify the output enable control (GPIOx_OE) and the output value (GPIOxO) for the GPIOx.

GL9701 also provides a General Purpose I/O, GPIO6 (PIN65), for users to use. Unlike GPIO0~GPIO5, this pin does not Mux other functions. Users just have to control the output enable (GPIO6_OE) and its output value (GPIO6O).

5.4 Interrupt mapping

PCI INTx interrupts are "virtualized" in PCI Express using Assert_INTx and Deassert_INTx messages, where x is A, B, C, and D for the respective PCI INTx# interrupt signals defined in PCI 3.0. This message pairing provides a mechanism to preserve the level-sensitive semantics of the PCI interrupts. The Assert_INTx and Deassert_INTx messages transmitted on the PCI Express Link capture the asserting/deasserting edge of the respective PCI INTx# signal.

GL9701 is a multi-ported PCI Express bridge. A multi-ported PCI Express bridges must collapse the INTA#-INTD# pins from each of their downstream conventional PCI interface into four INTx "virtual wires" on their Upstream Port. The mapping between the INTx# pin on a PCI bus and the corresponding INTx messages on the PCI Express Link is based on the device number of the PCI bridge assigned to the port requesting the interrupt. The mapping is as follows:

Device Number of	INTx# Interrupt Line from	Mapping to INTx Virtual
Conventional GL9701	Downstream	Wire on Primary Side of
Supporting	Conventional PCI	Bridge
Secondary Interface	Interface	
(Interrupt Source)		
	INTA#	INTA
0, 4	INTB#	INTB
0,4	INTC#	INTC
	INTD#	INTD
	INTA#	INTB
1	INTB#	INTC
1	INTC#	INTD
	INTD#	INTA
	INTA#	INTC
2	INTB#	INTD
2	INTC#	INTA
	INTD#	INTB
	INTA#	INTD
3	INTB#	INTA
3	INTC#	INTB
	INTD#	INTC

5.5 Initial Flow Control Advertisements

Flow control value for various credit type is advertised after the link is established. The initial value for each credit type in GL9701 is as followed:

Credit Type	Initial Flow Control Value
Posted Request headers (PH)	04h
Posted Request Data payload (PD)	20h
Non-Posted Request headers (NPH)	04h
Non-Posted Request Data payload (NPD)	04h
Completion headers (CPLH)	08h
Completion Data payload (CPLD)	20h

5.6 IDSEL Mapping

While receiving a Type1 Configuration Cycle from the upstream PCI Express port, GL9701 will convert it into a Type0 Configuration Cycle if the bus number is within the range specified by the Primary Bus Number Register and the Secondary Bus Number Register.

The format of a Type0 Configuration Cycle is as followed:

Type 0

GL9701 converts the destination ID device number to one of the AD[31:16] as the IDSEL of the five PCI slots. The mapping between the AD[31:16] and Device Number is:

Device Number [4:0]	AD[31:16]
00000	0000_0000_0000_0001
00001	0000_0000_0000_0010
00010	0000_0000_0000_0100
00011	0000_0000_0000_1000
00100	0000_0000_0001_0000
00101	0000_0000_0010_0000

CHAPTER 6 Register Description

GL9701 implements the standard PCI Express-to-PCI Bridge configuration space format. Figure 5.1 shows the capabilities supported by GL9701. Table 5.1 and Table 5.2 represent the configuration registers of GL9701 and their address byte offset values.

Configuration register fields are assigned one of the attributes described in Table 5.1.

Register Attribute	Description	
HwInit	Hardware Initialized: Register bits are initialized by	
2211222	firmware or hardware mechanisms such as pin strapping or	
	serial EEPROM. Bits are read-only after initialization and can	
	only be reset (for write-once by firmware) with Fundamental	
	Reset.	
RO	Read-only register: Register bits are read-only and cannot be	
	altered by software. Register bits may be initialized by	
	hardware mechanisms such as pin strapping or serial	
	EEPROM.	
RW	Read-Write register: Register bits are read-write and may be	
	either set or cleared by software to the desired state.	
RW1C	Read-only status, Write-1-to-clear status register: Register	
	bits indicate status when read, a set bit indicating a status	
	event may be cleared by writing a 1. Writing a 0 to RW1C	
	bits has no effect.	
ROS	Sticky - Read-only register: Registers are read-only and	
	cannot be altered by software. Registers are not initialized or	
	modified by hot reset.	
RWS	Sticky – Read-Write register: Registers are read-write and	
	may be either set or cleared by software to the desired state.	
	Bits are not initialized or modified by hot reset.	
RW1CS	Sticky – Read-only status, Write-1-to-clear status register:	
	Registers indicate status when read, a set bit indicating a	
	status event may be cleared by writing a 1. Writing a 0 to	
	RW1CS bits has no effect. Bits are not initialized or modified	
	by hot reset.	
RsvdP	Reserved and Preserved: Reserved for future RW	

	implementations; software must preserve value read for	
	writes to bits.	
RsvdZ	Reserved and Zero: Reserved for future RW1C	
	implementations; software must use 0 for writes to bits.	

Table 6.1 – Notation for attribute

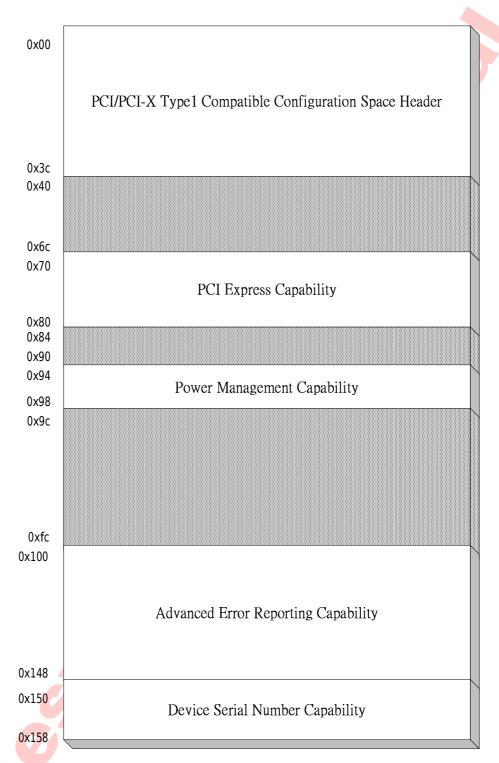


Figure 6.1 – GL9701 Capabilities

Byte Offset

Bit31 0

	Device	e ID	Ver	ndor ID	00h
	Stat	us	Command		04h
		Class Code		Revision ID	08h
	BIST	Header Type	Primary	Cache Line Size	0Ch
			Latency Timer		
		Base Ad	ldress Register 0		10h
		Base Ad	ldress Register 1		14h
	Secondary	Subordinate	Secondary Bus	Primary Bus	18h
	Latency timer	Bus Number	Number	Number	
Type1 Header	Secondar	y Status	I/O Limit	I/O Base	1Ch
	Memory	Limit	Men	nory Base	20h
	Prefetchable M	lemory Limit	Prefetchab	le Memory Base	24h
		Prefetchable	e Base Upper 32 B	its	28h
	Prefetchable Limit Upper 32 Bits				
	I/O Limit Upper 16 Bits		I/O Base Upper 16 Bits		30h
		Reserved		Capabilities Pointer	34h
	Expansion ROM Base Address				
	Bridge (Control	Interrupt Pin	Interrupt Line	3Ch
	PCI Express	Capabilities	Next Cap Pointer	PCI Express	
	Regis	ster		Cap ID	70h
		Device	ce Capabilities		74h
PCI Express	Device	Status	Devi	ce Control	78h
Capability		Link	Capabilities		7Ch
	Link S	Status	Link Control		80h
	Reserved				
	Rese	rved	Reserved		88h
	Rese	rved	Reserved		8Ch
]	Reserved		90h

Power	Power Management Capability		Next Pointer(43h)	PM Capability ID	94h
Management	register				
Capability	Data PM Ctrl/Stat		Power Manage	ment Status and	98h
		Bridge Ext	Cor	ntrol	

Table 6.2—Legacy Configuration Space

PCI Express Extended Capabilities Space

	Advanced Error Reporting	Next Cap Pointer	PCI Express	100h		
	Capability Header		Extended			
			Capability ID			
	Uncorrectable	Error Status Regis	ster	104h		
	Uncorrectable	e Error Mask Regis	ter	108h		
	Uncorrectable	Error Severity Reg	ister	10Ch		
	Correctable 1	Error Status <mark>Regist</mark>	er	110h		
Advanced	Correctable	Error <mark>Mask Reg</mark> ist	er	114h		
Error	Advanced Error Cap	abilities and Contro	ol Register	118h		
Reporting						
Capability						
	Header Log Register					
	Root Error Command –Not Implemented					
	Root Error Status –Not Implemented					
			Correctable Error	134h		
	Error Source ID Register -N	ot Implemented	Source ID			
			Register – Not			
		Implemented				
Device Serial	PCI Express Enh	anced Capability H	leader	150h		
Number	Serial Number Register (Lower DW)					
Capability	Serial Number Register (Upper DW)					

Table 6.3 – PCI Express Extended Configuration Space

6.1 Offset 00h: Device Identification

Generic configuration software will be able to determine what devices are available on PCI bus via these information. All of these registers are read-only.

Bits	Type	Default	Description
15:0	RO	17a0h	Vendor ID : This field identifies the manufacturer of the device.
31:16	RO	7163	Device ID : This field identifies the particular device.

6.2 Offset 04h: Command Register

Bits	Type	Default	Description
			I/O Space: Controls a device's response to I/O Space accesses.
0	RW	0b	0– Disables the device resp <mark>onse.</mark>
			1– Allows the device torespond to I/O Space accesses.
			Memory Space: Controls a device's response to Memory Space
1	RW	0b	accesses.
1	ΚW	00	0– Disables the device response.
			1– Allows the device to respond to Memory Space accesses.
			Bus Master: Controls a device's ability to act as a master on the
	DW	01	PCI bus.
2	RW	0b	0- Disables the device from generating PCI accesses.
			1- Allows the device to behave as a bus master.
3	RO	0b	Special Cycles: Does not apply to PCI Express Bridge.
			Memory Write and Invalidate Enable: GL9701 does not
4	RO	0b	optionally promote Memory Write Requests to Memory Write
			and Invalidate transactions on PCI.
5	RO	0b	VGA Palette Snoop: Does not apply to PCI Express bridges.
		76)	Parity Error Response:
			Controls the bridge's setting of the Master Data Parity Error bit in
6	RW	0b	the Status register in response to a received poisoned TLP from
			PCI Express.
			0 – Disables the setting of the Master Data Parity Error bit.

			1– Enables the setting of the Master Data Parity Error bit.
7	RO	0b	Reserved
			SERR# Enable: This bit enables reporting of non-fatal and fatal errors to the Root Complex. In addition, this bit enables transmission by the primary interface of ERR_NONFATAL and
			ERR_FATAL error messages on behalf of SERR# assertions detected on the secondary interface. Note that errors are reported if
8	RW	0b	enabled either through this bit or through the PCI Express specific bits in the Device Control register.
			0 – Disable the reporting of bridge non-fatal errors and fatal errors to the Root Complex.
			1 – Enable the reporting of bridge non-fatal errors and fatal errors to the Root Complex.
9	RO	0b	Fast Back-to-Back Transactions Enable: Does not apply to PCI Express bridges.
10	RW	0b	Interrupt Disable: GL9701 does not generate INTx interrupt
	_		messages on behalf of internal sources hence implements this bit as read-only with a value of 0 .
15:11	RO	00h	Reserved

6.3 Offset 06h: Status Register

Bits	Туре	Default	Description
2:0	RO	0h	Reserved
3	RO	0b	Interrupt Status – Indicates that an INTx interrupt message is
			pending on behalf of sources internal to the bridge.
4	RO	1b	Capabilities List – Indicates the presence of a Capability List
			item.
5	RO	0b	66 MHz Capable – Does not apply to PCI Express bridges.
6	RO	0b	Reserved
7	RO	0b	Fast Back-to-Back Transactions Capable – Does not apply to
			PCI Express bridges.

			Master Data Parity Error – This bit is used to report the
			detection of uncorrectable data errors by the bridge. This bit is set
			if the Parity Error Response bit in the Command register is set and
			either of the following two conditions occur:
			. The bridge receives a Completion with data marked
8	RW1C	0b	poisoned on the primary interface.
			. The bridge poisons a write Request on the primary interface.
			0 – No uncorrectable data error detected on the primary
			interface.
			1- Uncorrectable data error detected on the primary
			interface.
10.0	D.O.	001	DEVSEL# Timing – Does not apply to PCI Express bridges.
10:9	RO	00b	Must be hardwired to 00b.
			Signaled Target-Abort – This bit is set when the bridge
			generates a completion with Completer Abort Completion Status in
			response to a request received on its primary interface.
11	RW1C	0b	0 – Completer Abort Completion not transmitted on the
			primary interface.
			1 – Completer Abort Completion transmitted on the primary
			interface.
			Received Target-Abort – This bit is set when the bridge
			receives a Completion with Completer Abort Completion Status on
			its primary interface.
12	RW1C	0b	0 - Completer Abort Completion Status not received on
			primary interface.
			1 – Completer Abort Completion Status received on primary
			interface.
			Received Master-Abort – This bit is set when the bridge
			receives a Completion with Unsupported Request Completion
		7/	Status on its primary interface.
13	RW1C	0b	0 – Unsupported Request Completion Status not received on
			primary interface.
			1 – Unsupported Request Completion Status received on
			primary interface.

	ī		_
			Signaled System Error – This bit is set when the bridge sends an
			ERR_FATAL or ERR_NONFATAL message to the Root
			Complex and the SERR# Enable bit in the Command register is
1.4	DW1G	01	set.
14	RW1C	0b	0 – Neither ERR_FATAL nor ERR_NONFATAL transmitted
			on primary interface.
			1 – ERR_FATAL or ERR_NONFATAL transmitted on
			primary interface.
		RW1C 0b	Detected Parity Error – This bit is set by the bridge whenever it
			receives a poisoned TLP or, if supported, a TLP with bad ECRC
			(Read Completion or Write Request) on the primary interface,
			regardless of the state the Parity Error Response bit in the
15	RW1C		Command register.
			0 – Data poisoning and bad ECRC not detected by the
			bridge on its primary interface.
			1 – Data poisoning or bad ECRC detected by the bridge on its
			primary interface.

6.4 Offset 08h: Revision ID

Bits	Туре	Default	Description
7:0	RO	00h	Revision ID : Indicates the die version of GL9701.

6.5 Offset 09h: Class Code

Bits	Туре	Default	Description
7:0	RO	00h	Programming Interface (PIF): This bit indicates that this device is standard PCI-to-PCI Bridge.
15:8	RO	04h	Sub Class Code (SCC): This 8-bit value indicates that this device is a PCI-to-PCI Bridge.
23:16	RO	06h	Base Class Code (BCC): The value of 06h indicates that this is a bridge device.

6.6 Offset 0ch: Cache Line Size Register

Bits	Туре	Default	Description
7:0	RW	00h	Cache Line Size: Specifies the system cacheline size in units of
			DWORDs.

6.7 Offset 0dh: Primary Latency Timer Register

Bits	Туре	Default	Description
7:0	RO	00h	Primary Latency Timer: The primary/master latency timer does
7.0	RO		not apply to PCI Express bridges

6.8 Offset 0eh: Header Type Register

Bits	Type	Default	Description
7:0	RO	01h	Header Type: Indicates that the header is compatible with PCI system software developed for Type 01h PCI and PCI-X bridges.

6.9 Offset 0fh: Bist Register

Bits	Туре	Default	Description
7:0	RO	00h	BIST: GL9701 does not support BIST.

6.10 Offset 10h: Base Register0

Bits	Type	Default	Description
31:0	RO	00h	Base Register0: GL9701 does not use base register.

6.11 Offset 14h: Base Register1

Bits	Туре	Default	Description
31:0	RO	00h	Base Register1: GL9701 does not use base register.

6.12 Offset 18h: Primary Bus Number Register

Bits	Type	Default	Description
7:0	RW	00h	Primary Bus Number: Used to record the Bus Number of the logical PCI bus segment to which the primary interface of the bridge is connected. Configuration software is required to program the value into this register

6.13 Offset 19h: Secondary Bus Number Register

Bits	Туре	Default	Description
7:0	RW	00h	Secondary Bus Number: Used to record the Bus Number of the PCI bus segment to which the secondary interface of the bridge is connected. Configuration software programs the value in this register.

6.14 Offset 1ah: Subordinate Bus Number Register

Bits	Type	Default	Description
7:0	RW	00h	Subordinate Bus Number: Used to record the Bus Number of the highest numbered PCI bus segment which is downstream of (or subordinate to) the bridge. Configuration software programs the value in this register.

6.15 Offset 1bh: Secondary Latency Timer Register

Bits	Type	Default	Description
7:0	RW	00h	Secondary Latency Timer: This register specifies, in units of PCI bus clocks, the value of the Latency Timer for the secondary interface GL9701.

6.16 Offset 1ch: IO Base and IO Limit Register

Bits	Туре	Default	Description
3:0	RO	0h	I/O Base Addressing Capability: Each of these bits is hard-wired

			to 0, indicating support for 16-bit I/O addressing only.
7:4	RW	Oh	I/O Base Address Bits [15:12]: These bits define the bottom address of an address range to determine when to forward I/O transactions from one interface to another. These bits correspond to address lines[15:12] for 4 KB alignment. Bits[11:0] are assumed to be 000h.
11:8	RO	Oh	I/O Limit Addressing Capability (IOLC): Each of these bits is hard-wired to 0, indicating support for 16-bit I/O addressing only.
15:12	RW	Oh	I/O Limit Address Bits [15:12] (IOLA): These bits define the top address of an address range to determine when to forward I/O transactions from PCI Express* to PCI. These bits correspond to address lines[15:12] for 4 KB aligned window. Bits[11:0] are assumed to be FFFh.

6.17 Offset 1eh: Secondary Status Register

Bits	Туре	Default	Description
4:0	RsvdZ	00h	Reserved
5	RO	1b	66 MHz Capable: This bit indicates that the secondary interface of the bridge is 66 MHz-capable.
6	RsvdZ	0b	Reserved
7	RO	0b	Fast Back-to-Back Transactions Capable: This bit indicates that the secondary interface is not able to receive fast back-to-back cycles.
8	RW1C	Ob	Master Data Parity Error – This bit is used to report the detection of an uncorrectable data error by the bridge. This bit is set if the bridge is the bus master of the transaction on the secondary interface, the Parity Error Response Enable bit in the Bridge Control register is set, and either of the following two conditions occur: . The bridge asserts PERR# on a read transaction. . The bridge detects PERR# asserted on a write transaction. Once set, this bit remains set until it is reset by writing a 1 to this

			· · · · · · · · · · · · · · · · · · ·
			bit location. If the Parity Error Response Enable bit is set to zero,
			this bit will not be set when an error is detected.
			0 – No uncorrectable data error detected on the secondary
			interface.
			1 – Uncorrectable data error detected on the secondary
			interface.
			DEVSEL Timing – This bit field encodes the timing of the
			secondary interface DEVSEL# as listed below.
10.0	D.O.	041	00 – Fast DEVSEL# decoding
10:9	RO	01b	01 – Medium DEVSEL# decoding
			10 – Slow DEVSEL# decoding
			11 – Reserved
			Signaled Target-Abort – This bit reports the signaling of a
			Target-Abort termination by the bridge when it responds as the
			target of a transaction on its secondary interface or when it signals
11	RW1C	0b	a PCI-X Split Completion with Target-Abort.
			0 – Target-Abort not signaled on secondary interface.
			1 – Target-Abort signaled on secondary interface.
			Received Target-Abort – This bit reports the detection of a
			Target-Abort termination by the bridge when it is the master of a
12	RW1C	0b	transaction on its secondary interface.
			0 – Target-Abort not detected on secondary interface.
			1 – Target-Abort detected on secondary interface.
			Received Master-Abort – This bit reports the detection of a
			Master-Abort termination by the bridge when it is the master of a
13	RW1C	0b	transaction on its secondary interface.
			0 – Master-Abort not detected on secondary interface.
			1 – Master-Abort detected on secondary interface.
			Received System Error – This bit reports the detection of an
		74	SERR# assertion on the secondary interface of the bridge.
		9	0 – SERR# assertion on the secondary interface has not
14	RW1C	0b	been detected.
			1 – SERR# assertion on the secondary interface has been
	7/		detected.

			Detected Parity Error – This bit reports the detection of an
			uncorrectable address, attribute, or data error by the bridge on its
			secondary interface.
			The bit is set irrespective of the state of the Parity Error
15	RW1C	0b	Response Enable bit in the Bridge Control register.
			0 – Uncorrectable address, attribute, or data error not
			detected on secondary interface
			1 – Uncorrectable address, attribute, or data error detected on
			secondary interface

6.18 Offset 20h: Memory Base and Limit Register

Bits	Туре	Default	Description
3:0	RO	0h	Reserved
15:4	RW	000h	Memory Base: These bits are compared with bits[31:20] of the incoming address to determine the lower 1 MB-aligned value (inclusive) of the range. The incoming address must be greater than or equal to this value.
19:16	RO	0h	Reserved
31:20	RW		Memory Limit: These bits are compared with bits[31:20] of the incoming address to determine the upper 1 MB-aligned value (exclusive) of the range. The incoming address must be less than this value.

6.19 Offset 24h: Prefetchable Memory Base and Limit Register

Bits	Туре	Default	Description
3:0	RO	Oh	64-bit Indicator: These bits indicate that 64-bit addressing is not supported for the base.
15:4	RW	000h	Prefetchable Memory Base: These bits are compared with bits[31:20] of the incoming address to determine the lower 1 MB-aligned value (inclusive) of the range. The incoming address must be greater than or equal to this value.

19:16	RO	0b	64-bit Indicator: These bits indicate that 64-bit addressing is not supported for the limit.
31:20	RW	000h	Prefetchable Memory Limit: These bits are compared with bits[31:20] of the incoming address to determine the upper 1 MB-aligned value (inclusive) of the range. The incoming address must be less than this value.

6.20 Offset 28h: Prefetchable Base Upper 32-bits Register

Bits	Туре	Default	Description
31:0	RO	0000-0000h	Prefetchable Memory Base Upper 32bit: These bits indicate that
31.0	RO		full 64-bit addressing is not supported.

6.21 Offset 2ch: Prefetchable Limit Upper 32-bits Register

Bits	Туре	Default	Description
31:0	RO	0000-0000h	Prefetchable Memory Limit Upper 32bit: These bits indicate
31.0	RO		that full 64-bit addressing is not supported.

6.22 Offset 30h: IO Base and Limit Upper 16-bits Register

Bits	Type	Default	Description
15:0	RO	0000h	I/O Base Upper 16 Bits: 32-bit IO addressing is not supported
31:16	RO	0000h	I/O Limit Upper 16 Bits: 32-bit IO addressing is not supported

6.23 Offset 34h: Capabilities Pointer Register

Bits	Туре	Default	Description
			Capabilities Pointer: These bits indicate that the pointer for the
7:0	RO	70h	first entry in the capabilities list is at 70h in the configuration
			space.

6.24 Offset 3ch: Interrupt Line Register

Bits	Type	Default	Description
7:0	RW	00h	Interrupt Line: Used to communicate interrupt line routing information. Software will write the routing information into this register as it initializes and configures the system.

6.25 Offset 3dh: Interrupt Pin Register

Bits	Type	Default	Description
7:0	RO	00h	Interrupt Pin: GL9701 does not use an interrupt pin.

6.26 Offset 3eh: Bridge Control Register

Bits	Type	Default	Description
0	RW	ОЬ	Parity Error Response Enable – Controls the bridge's response to uncorrectable address, attribute, and data errors on the secondary interface. 0 – Ignore uncorrectable address, attribute, and data errors on the secondary interface. 1 – Enable uncorrectable address, attribute, and data error detection and reporting on the secondary interface.
1	RW	ОЬ	SERR# Enable – Controls the forwarding of secondary interface SERR# assertions to the primary interface. The bridge will transmit an ERR_FATAL or ERR_NONFATAL cycle on the primary interface when all of the following are true: . SERR# is asserted on the secondary interface This bit is set or Advanced Error Reporting is supported and the SERR# Assertion Detected Mask bit is clear in the Secondary Uncorrectable Error Mask register The SERR# Enable bit is set in the Command register or the PCI Express-specific bits are set (refer to Chapter 10 for details) in the Device Control register of the PCI Express Capability Structure.

			0 B: 11 4 6 " (27777")
			0 – Disable the forwarding of SERR# from the secondary
			interface to ERR_FATAL and ERR_NONFATAL
			1– Enable the forwarding of secondary SERR# to
			ERR_FATAL or ERR_NONFATAL.
			ISA Enable – Modifies the response by the bridge to ISA I/O
			addresses. This applies only to I/O addresses that are enabled by
			the I/O Base and I/O Limit registers and are in the first 64 KB of
			PCI I/O address space (0000 0000h to 0000 FFFFh). If this bit is
			set, the bridge will block any forwarding from primary to
			secondary of I/O transactions addressing the last 768 bytes in each
			1-KB block. In the opposite direction (secondary to primary), I/O
			transactions will be forwarded if they address the last 768 bytes in
2	RW	0b	each 1-KB block.
			0 – Forward downstream all I/O addresses in the address
			range defined by the I/O Base and I/O Limit registers.
			1– Forward upstream ISA I/O addresses in the address
			range defined by the I/O Base and I/O Limit registers that
			are in the first 64 KB of PCI I/O address space (top 768
			bytes of each 1-KB block).
			VGA Enable (Optional) – Modifies the response of the bridge to
			VGA-compatible addresses. If this bit is set, the bridge will
			forward the following accesses on the primary interface to the
			secondary interface (and, conversely, block the forwarding of these
			addresses from the secondary to primary interface):
			Memory accesses in the range 000A 0000h to 000B FFFFh
3	RW	0b	I/O addresses in the first 64 KB of the I/O address space
			(Address[31:16] for PCI Express are 0000h) and where
			Address[9:0] is in the range of 3B0h to 3BBh or 3C0h to
		73)	3DFh (inclusive of ISA address aliases – Address[15:10]
			may possess any value and is not used in the decoding)
			0 – Do not forward VGA compatible memory and I/O
			·
			addresses from the primary to the secondary interface

		•	
			(addresses defined above) unless they are enabled for
			forwarding by the defined I/O and memory address
			ranges.
			1– Forward VGA compatible memory and I/O addresses
			(addresses defined above) from the primary interface to
			the secondary interface (if the I/O Enable and Memory
			Enable bits are set) independent of the I/O and memory
			address ranges and independent of the ISA Enable bit.
			VGA 16-bit Decode – This bit enables the bridge to provide 16-bit
			decoding of VGA I/O address precluding the
			decoding of alias addresses every 1 KB. This bit only has
			meaning if the VGA Enable bit in this register is also set to 1,
4	RW	0b	enabling VGA I/O decoding and forwarding by the bridge.
			0 – Execute 10-bit address decodes on VGA I/O
			accesses.
			1– Execute 16-bit address decodes on VGA I/O
			accesses.
			Master-Abort Mode – Controls the behavior of a bridge when it
			receives a Master-Abort termination (e.g., an Unsupported Request
			on PCI Express) on either interface.
			0 – Do not report Master-Aborts. When a UR response is
			received from PCI Express for non-posted transactions,
			and when the secondary side is operating in conventional
			PCI mode, return FFFF FFFFh on reads and complete I/O
			writes normally. When a Master-Abort is received on the
5	RW	0b	secondary interface for posted transactions initiated from
			the primary interface, no action is taken (i.e., all data is
			discarded).
			1 – Report UR Completions from PCI Express by signaling
			Target-Abort on the secondary interface when the
		Z)	secondary interface is operating in conventional PCI
	_		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			mode. For posted transactions initiated from the primary
	S		mode. For posted transactions initiated from the primary interface and Master-Aborted on the secondary interface.
			mode. For posted transactions initiated from the primary interface and Master-Aborted on the secondary interface, the bridge must return an ERR_NONFATAL (by default)

	1		
			or ERR_FATAL transaction (provided the SERR# Enable
			bit is set in the Command register). The severity is
			selectable only if Advanced Error Reporting is supported.
			Secondary Bus Reset – Forces the assertion of RST# on the
			secondary interface.
6	RW	0b	0 – Do not force the assertion of the secondary interface
			RST#.
			1 – Force the assertion of the secondary interface RST#.
			Fast Back-to-Back Enable – Controls ability of the bridge to
			generate fast back-to-back transactions to different devices on the
			secondary interface.
7	RO	0b	0 – Disable generation of fast back-to-back transactions on
			the secondary interface.
			1 – Enable generation of fast back-to-back transactions on the
			secondary interface.
8	RO	0b	Primary Discard Timer – Does not apply to PCI Express.
			Secondary Discard Timer – When in conventional PCI mode,
			elects the number of PCI clocks that the bridge will wait for a
			master on the secondary interface to repeat a Delayed Transaction
9	RW	0b	request
,	KVV	00	0 – The Secondary Discard Timer counts 215 PCI clock
			cycles.
			1– The Secondary Discard Timer counts 210 PCI clock
			cycles.
			Discard Timer Status – This bit is set to a 1 when the Secondary
			Discard Timer expires and a Delayed Completion is discarded
10	RW	0b	from a queue in the bridge.
			0 – No discard timer error.
			1 – Discard timer error.
		73)	Discard Timer SERR# Enable – This bit enables the bridge to
			generate either an ERR_NONFATAL (by default) or
11	RW	0b	ERR_FATAL transaction on the primary interface when the
			Secondary Discard Timer expires and a Delayed Transaction is
			discarded from a queue in the bridge.

15:12	RO	0h	Reserved
			the bridge.
			and a Delayed Transaction is discarded from a queue in
			primary interface if the Secondary Discard Timer expires
			1 – Generate ERR_NONFATAL or ERR_FATAL on the
			is clear.
			the Delayed Transaction Discard Timer Expired Mask bit
			still be sent if Advanced Error Reporting is supported and
			Secondary Discard Timer. Note that an error message can
			the primary interface as a result of the expiration f the
			0 – Do not generate ERR_NONFATAL or ERR_FATAL on

6.27 Offset 70h: PCI Express Capability List Register

Bits	Туре	Default	Description
7:0	RO	10h	Capability ID – Indicates the PCI Express Capability structure. This field must return a Capability ID of 10h indicating that this is a PCI Express Capability structure.
15:8	RO	94h	Next Capability Pointer – The offset to the next PCI capability structure which is Power Management Capability.

6.28 Offset 72h: PCI Express Capabilities Register

Bits	Туре	Default	Description
3:0	RO	1h	Capability Version – Indicates PCI-SIG defined PCI Express capability structure version number.
7:4	RO	7h	Device/Port Type – Indicates the type of PCI Express logical device. GL9701 is a PCI Express-to-PCI/PCI-X Bridge(7h).
8	RO	0b	Slot Implemented – Not supported in GL9701.
13:9	RO	00h	Interrupt Message Number – Not supported in GL9701.

6.29 Offset 74h: PCI Express Device Capabilities Register

Bits	Type	Default	Description
2:0	RO	010b	Max_Payload_Size Supported -512 bytes max payload size is supported.
4:3	RO	00b	Phantom Functions Supported –No function number bits used for Phantom Functions; device may implement all function numbers.
5	RO	0b	Extended Tag Field Supported –5-bit Tag field supported
8:6	RO	111b	Endpoint L0s Acceptable Latency – The acceptable total latency that an Endpoint can withstand due to the transition from L0s state to the L0 state is more than $4 \mu s$.
11:9	RO	111b	Endpoint L1 Acceptable Latency – The acceptable latency that an Endpoint can withstand due to the transition from L1 state to the L0 state is more than 64 μ s.
12	RO	0b	Attention Button Present – Not supported.
13	RO	0b	Attention Indicator Present – Not supported.
14	RO	0b	Power Indicator Present – Not supported.
17:15	RsvdP	000b	RsvdP
25:18	RO	00h	Captured Slot Power Limit Value – In combination with the Slot Power Limit Scale value, specifies the upper limit on power supplied by slot. This value is set by the Set_Slot_Power_Limit Message
27:26	RO	00b	Captured Slot Power Limit Scale – Specifies the scale used for the Slot Power Limit Value. This value is set by the Set_Slot_Power_Limit Message.

6.30 Offset 78h: PCI Express Device Control Register

Bits	Туре	Default	Description
0	0 RW	RW 0b	Correctable Error Reporting Enable – This bit controls
U			reporting of correctable errors.

		1	
1	RW	0b	Non-Fatal Error Reporting Enable – This bit controls reporting of Non-fatal errors.
2	RW	0b	Fatal Error Reporting Enable – This bit controls reporting of Fatal errors.
3	RW	0b	Unsupported Request Reporting Enable – This bit enables reporting of Unsupported Requests when set.
4	RW	0b	Enable Relaxed Ordering – If this bit is set, the device is permitted to set the Relaxed Ordering bit in the Attributes field of transactions it initiates that do not require strong write ordering.
7:5	RW	000Ь	Max_Payload_Size – This field sets maximum TLP payload size for the device. Permissible values that can be programmed are indicated by the Max_Payload_Size Supported in the Device Capabilities register.
8	RO	0b	Extended Tag Field Enable – Not supported.
9	RO	0b	Phantom Functions Enable – Not supported.
10	RO	0b	Auxiliary (AUX) Power PM Enable – Not su[pported.
11	RO	0b	Enable No Snoop – GL9701 never sets the No Snoop attribute in transactions it initiates.
14:12	RW	010b	Max_Read_Request_Size – This field sets the maximum Read Request size for the Device as a Requester. The Device must not generate read requests with size exceeding the set value.
15	RsvdP	0b	RsvdP

6.31 Offset 7ah: PCI Express Device Status Register

Bits	Туре	Default	Description
0	RW1C	0b	Correctable Error Detected – This bit indicates status of correctable errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.
1	RW1C	0b	Non-Fatal Error Detected – This bit indicates status of Nonfatal errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the

			Device Control register.
2	RW1C	Ob	Fatal Error Detected – This bit indicates status of Fatal errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.
3	RW1C	Ob	Unsupported Request Detected – This bit indicates that the device received an Unsupported Request. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.
4	RO	0b	AUX Power Detected – Devices that require AUX power report this bit as set if AUX power is detected by the device.
5	RO	Ob	Transactions Pending – This bit when set indicates that the device has issued Non-Posted Requests which have not been completed. A device reports this bit cleared only when all outstanding Non-Posted Requests have completed or have been terminated by the Completion Timeout mechanism.
15:6	RsvdZ	000h	RsvdZ

6.32 Offset 7ch: PCI Express Link Capabilities Register

Bits	Туре	Default	Description
3:0	RO	0001Ь	Maximum Link Speed – This field indicates the maximum Link speed of the given PCI Express Link. Defined encodings are: 2.5 Gb/s Link
9:4	RO	00001b	Maximum Link Width – This field indicates the maximum width of the given PCI Express Link.
11:10	RO	00b	Active State Power Management (ASPM) Support – Not supported
14:12	RO	111b	L0s Exit Latency – This field indicates the L0s exit latency for the given PCI Express Link.
17:15	RO	111b	L1 Exit Latency – This field indicates the L1 exit latency for the given PCI Express Link.
23:18	RsvdP	00h	RsvdP
31:24	RO	01h	Port Number – This field indicates the PCI Express Port

number for the given PCI Express Link.
--

6.33 Offset 80h: PCI Express Link Control Register

Bits	Type	Default	Description
1:0	RO	00b	Active State Power Management (ASPM) Control – GL9701 does not support ASPM.
2	RsvdP	0b	RsvdP
3	RO	Ob	Read Completion Boundary (RCB) – Indicates the RCB value for the Root Port. Defined encodings are: 0b: 64 byte 1b: 128 byte
4	RW	0b	Link Disable – This bit disables the Link when set to 1b.
5	RW	0b	Retrain Link – A write of 1b to this bit initiates Link retraining by directing the Physical Layer LTSSM to the Recovery state.
6	RW	ОЬ	Common Clock Configuration – This bit when set indicates that this component and the component at the opposite end of this Link are operating with a distributed common reference clock. A value of 0b indicates that this component and the component at the opposite end of this Link are operating with asynchronous reference clock.
7	RW	ОЬ	Extended Synch – This bit when set forces the transmission of 4096 FTS ordered sets in the L0s state followed by a single SKP ordered set prior to entering the L0 state, and the transmission of 1024 TS1 ordered sets in the L1 state prior to entering the Recovery state.
15:8	RsvdP	00h	RsvdP

6.34 Offset 82h: PCI Express Link Status Register

Bits	Туре	Default	Description
3:0	0 RO	0h	Link Speed – This field indicates the negotiated Link speed of the
3:0	KO		given PCI Express Link.Defined encodings are:

			0001b 2.5 Gb/s PCI Express Link
9:4	RO	000001b	Negotiated Link Width – This field indicates the negotiated width of the given PCI Express Link.
10	RO	0b	Training Error – This read-only bit indicates that a Link training error occurred.
11	RO	ОЬ	Link Training – This read-only bit indicates that Link training is in progress (Physical Layer LTSSM in Configuration or Recovery state) or that 1b was written to the Retrain Link bit but Link training has not yet begun. Hardware clears this bit once Link training is complete.
12	RO	1b	Slot Clock Configuration – This bit indicates that the component uses the same physical reference clock that the platform provides on the connector.
15:13	RsvdZ	000b	RsvdZ

6.35 Offset 94h: PM Capability ID Register

Bits	Туре	Default	Description
7:0	RO	01h	ID – This field, when "01h" identifies the linked list item as being the PCI Power Management registers.

6.36 Offset 95h: PM Next Pointer Register

Bits	Type	Default	Description
7:0	RO	a0h	Next Item Pointer – Next capability is Slot Numbering capability.

6.37 Offset 96h: Power Management Capabilities Register

Bits	Туре	Default	Description
2:0	RO	010b	Version – A value of 010b indicates that this function complies with Revision 1.1 of the PCI Power Management Interface Specification.
3	RO	0b	PME Clock – Indicates that no PCI clock is required for the

			function to generate PME#.
5:4	RO	00b	Reserved
8:6	RO	111b	Aux_Current – This 3 bit field reports the 3.3Vaux auxiliary current requirements for the PCI function.
9	RO	1b	D1_Support – GL9701 supports the D1 Power Management State.
10	RO	1b	D2_Support – GL9701 supports the D1 Power Management State.
15:11	RO	00001b	PME_Support – PME# can be asserted from D0.

6.38 Offset 98h: Power Management Control and Status Register

Bits	Type	Default	Description
1:0	RW	00b	PowerState – This 2-bit field is used both to determine the current power state of a function and to set the function into a new power state.
7:2	RO	000000ь	Reserved
8	RW	0b	PME_En – A "1" enables the function to assert PME#. When "0", PME# assertion is disabled.
12:9	RO	0h	Data_Select – This 4-bit field is used to select which data is to be reported through the Data register and Data_Scale field.
14:13	RO	00b	Data_Scale – This 2-bit read-only field indicates the scaling factor to be used when interpreting the value of the Data register.
15	RW1C	0b	PME_Status – This bit is set when the function would normally assert the PME# signal independent of the state of the PME_En bit.

6.39 Offset a0h: Slot Numbering Capabilities ID Register

Bits	Туре	Default	Description
7:0	RO	04h	Slot Numbering Capabilities ID Register

6.40 Offset a1h: Slot Numbering Pointer to Next ID Register

Bits	Type	Default	Description
7:0	RO	00h	Pointer to Next Capabilities

6.41 Offset a2h: Slot Numbering Expansion Slot Register

Bits	Туре	Default	Description
4:0	RO		Expansion Slots Provided – Contains the binary value of the number of PCI expansion slots located directly on the secondary interface of this bridge.
5	RO	1b	First in Chassis – If this bit is set, it indicates that this bridge is the first in an expansion chassis. A bridge with this bit set indicates the existence of an expansion chassis that requires a unique chassis number. 0 – This is not a parent bridge. 1 – This is a parent bridge.
7:6	RO	00b	Reserved

6.42 Offset a3h: Slot Numbering Chassis Number Register

Bits	Туре	Default	Description
7:0	RW	00h	Chassis Number: Contains the physical chassis number for the slots on the bridge's secondary interface.

6.43 Offset 100h: Advanced Error Reporting Enhanced Capability Header Register

Type	Default	Description
RO	0001h	PCI Express Extended Capability ID
RO	1h	Capability Version
RO	150h	Next Capability Offset – Next capability is Device Serial Number Capability.
	RO RO	RO 0001h RO 1h

6.44 Offset 104h: Uncorrectable Error Status Register

Bits	Туре	Default	Description
0	RW1C	0	Training Error Status
4	RW1C	0	Data Link Protocol Error Status
12	RW1C	0	Poisoned TLP Status
13	RW1C	0	Flow Control Protocol Error Status
14	RW1C	0	Completion Timeout Status
15	RW1C	0	Completer Abort Status
16	RW1C	0	Unexpected Completion Status
17	RW1C	0	Receiver Overflow Status
18	RW1C	0	Malformed TLP Status
19	RW1C	0	ECRC Error Status
20	RW1C	0	Unsupported Request Error Status

6.45 Offset 108h: Uncorrectable Error Mask Register

Bits	Туре	Default	Description
0	RWS	0	Training Error Mask
4	RWS	0	Data Link Protocol Error Mask
12	RWS	0	Poisoned TLP Mask
13	RWS	0	Flow Control Protocol Error Mask
14	RWS	0	Completion Timeout Mask
15	RWS	0	Completer Abort Mask
16	RWS	0	Unexpected Completion Mask
17	RWS	0	Receiver Overflow Mask
18	RWS	0	Malformed TLP Mask
19	RWS	0	ECRC Error Mask

20	RWS	0	Unsupported Request Error Mask
----	-----	---	--------------------------------

6.46 Offset 10ch: Uncorrectable Error Severity Register

Bits	Туре	Default	Description
0	RWS	1	Training Error Severity
4	RWS	1	Data Link Protocol Error Severity
12	RWS	0	Poisoned TLP Severity
13	RWS	1	Flow Control Protocol Error Severity
14	RWS	0	Completion Timeout Error Severity
15	RWS	0	Completer Abort Error Severity
16	RWS	0	Unexpected Completion Error Severity
17	RWS	1	Receiver Overflow Error Severity
18	RWS	1	Malformed TLP Severity
19	RWS	0	ECRC Error Severity
20	RWS	0	Unsupported Request Error Severity

6.47 Offset 110h: Correctable Error Status Register

Bits	Туре	Default	Description
0	RW1CS	0	Receiver Error Status
6	RW1CS	0	Bad TLP Status
7	RW1CS	0	Bad DLLP Status
8	RW1CS	0	REPLAY_NUM Rollover Status
12	RW1CS	0	Replay Timer Timeout Status

6.48 Offset 114h: Correctable Error Mask Register

Bits	Type	Default	Description
------	------	---------	-------------

0	RWS	0	Receiver Error Mask	
6	RWS	0	Bad TLP Mask	
7	RWS	0	Bad DLLP Mask	
8	RWS	0	REPLAY_NUM Rollover Mask	
12	RWS	0	Replay Timer Timeout Mask	

6.49 Offset 118h: Advanced Error Capabilities and Control Register

Bits	Туре	Default	Description
4:0	4:0 ROS	00h	First Error Pointer – Identifies the bit position of the first error
			reported in the Uncorrectable Error Status register.
5	RO	1b	ECRC Generation Capable – This bit indicates that
3	KO		the device is capable of generating ECRC.
6	RWS	0b	ECRC Generation Enable – This bit when set
O	RWS		enables ECRC generation.
7	RO	1b	ECRC Check Capable – This bit indicates that the
/	RO		device is capable of checking ECRC.
8	RWS	0b	ECRC Check Enable – This bit when set enables
δ			ECRC checking.

6.50 Offset 11ch: Header Log Register

Bits	Type	Default	Description
127:0	ROS	0h	Header Log – Header of TLP associated with error

6.51 Offset 12ch: Secondary Uncorrectable Error Status Register

Bits	Туре	Default	Description
0	RW1CS	0	Target-Abort on Split Completion Status
1	RW1CS	0	Master-Abort on Split Completion Status
2	RW1CS	0	Received Target-Abort Status

3	RW1CS	0	Received Master-Abort Status
4	RsvdZ	0	Reserved
5	RW1CS	0	Unexpected Split Completion Error Status
6	RW1CS	0	Uncorrectable Split Completion Message Data Error Status
7	RW1CS	0	Uncorrectable Data Error Status
8	RW1CS	0	Uncorrectable Attribute Error Status
9	RW1CS	0	Uncorrectable Address Error Status
10	RW1CS	0	Delayed Transaction Discard Timer Expired Status
11	RW1CS	0	PERR# Assertion Detected
12	RW1CS	0	SERR# Assertion Detected (No Header Log)
13	RW1CS	0	Internal Bridge Error Status

6.52 Offset 130h: Secondary Uncorrectable Error Mask Register

Bits	Туре	Default	Description
0	RWS	0	Target-Abort on Split Completion Mask
1	RWS	0	Master-Abort on Split Completion Mask
2	RWS	0	Received Target-Abort Mask
3	RWS	1	Received Master-Abort Mask
4	RsvdP	0	Reserved
5	RWS	1	Unexpected Split Completion Error Mask
6	RWS	0	Uncorrectable Split Completion Message Data Error Mask
7	RWS	1	Uncorrectable Data Error Mask
8	RWS	1	Uncorrectable Attribute Error Mask
9	RWS	1	Uncorrectable Address Error Mask

10	RWS	1	Delayed Transaction Discard Timer Expired Mask	
11	RWS	0	PERR# Assertion Detected Mask	
12	RWS	1	SERR# Assertion Detected Mask	
13	RWS	0	Internal Bridge Error Mask	

6.53 Offset 134h: Secondary Uncorrectable Error Severity Register

Bits	Туре	Default	Description
0	RWS	0	Target-Abort on Split Completion Severity
1	RWS	0	Master-Abort on Split Completion Severity
2	RWS	0	Received Target-Abort Severity
3	RWS	0	Received Master-Abort Severity
4	RsvdP	0	Reserved
5	RWS	0	Unexpected Split Completion Error Severity
6	RWS	1	Uncorrectable Split Completion Message Data Error Severity
7	RWS	0	Uncorrectable Data Error Severity
8	RWS	1	Uncorrectable Attribute Error Severity
9	RWS	1	Uncorrectable Address Error Severity
10	RWS	0	Delayed Transaction Discard Timer Expired Severity
11	RWS	0	PERR# Assertion Detected Severity
12	RWS	1	SERR# Assertion Detected Severity
13	RWS	0	Internal Bridge Error Severity

6.54 Offset 138h: Secondary Error Capabilities and Control Register

Bits	Type	Default	Description
------	------	---------	-------------

4:0	ROS	00h	Secondary Uncorrectable First Error Pointer
4.0	ROS	OON	Secondary encorrectable rust Error romeer

6.55 Offset 13ch: Secondary Header Log Register

Bits	Туре	Default	Description
35:0	ROS	0h	Transaction Attribute – Not supported.
39:36	ROS		Transaction Command Lower – The 4-bit value transferred on C/BE[3:0]# during the first address phase.
43:40	ROS	0h	Transaction Command Upper – Not supported
127:64	ROS	0h	Transaction Address – bits 127:96 will be set to zero

6.56 Offset 150h: Device Serial Number Enhanced Capability Header Register

Bits	Туре	Default	Description
15:0	RO	0003h	PCI Express Extended Capability ID
19:16	RO	1h	Capability Version
31:20	RO	000h	Next Capability Offset

6.57 Offset 154h: Device Serial Number Register

Bits	Type	Default	Description
63:0	RO	0h	PCI Express Device Serial Number

CHAPTER 7 Electrical Characteristics

7.1 Operation Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Non-AUX GL9701 Bridge Core Power	1.62	1.8	1.98	Volt
VDD33	Non-AUX PCI Pad Power	2.97	3.3	3.63	Volt
VDD18_AUX	AUX GL9701 Bridge Core Power	1.62	1.8	1.98	Volt
VDD33_AUX	AUX PCI Pad Power	2.97	3.3	3.63	Volt
AVDDPCI	Analog Power for PCI PLL	1.62	1.8	1.98	Volt
VDDPLL	Analog power for PLL	1.62	1.8	1.98	Volt
VDDRX	Analog Power for RX	1.62	1.8	1.98	Volt
VDDTX	Analog Power for TX	1.62	1.8	1.98	Volt

7.2 Differential Transmitter (TX) Output Specification

The following table defines the specification of parameters for the differential output at all

Transmitters (TXs). The parameters are specified at the component pins.

Symbol	Parameter	Min	Тур	Max	Units	Comments
UI	Unit Interval	399.88	400	400.12	ps	Each UI is 400 ps
						+/-300 ppm. UI does
						not account for SSC
						dictated variations.
						See Note 1.
VTX-DIFFp-p	Differential	0.800		1.2	V	VTX-DIFFp-p =
	Peak					2* VTX-D+ - VTX-D-
	to Peak Output					See Note 2.
	Voltage					
VTX-DE-RATIO	De-Emphasized	-3.0	-3.5	-4.0	dB	This is the ratio of the
	Differential					VTX-DIFFp-p of the
	Output Voltage					second and following
	(Ratio)					bits after a transition
						divided by the
						VTX-DIFFp-p of the
						first bit after a
						transition.

GL9701 PCI Express TM to PCI Bridge

TTX-MAX-JITTER 1 - TTX-EYE = 0.2: UI. This parameter is measured with the equivalent of a zero jitter reference clock See Notes 2 and 3. TTX-EYEMEDIAN- Maximum time 0.125 UI Jitter is defined as the	TX-EYE		0.75		UI	The maximum
Eye Width Transmitter jitter can be derived TTX-MAX-JITTER 1 - TTX-EYE = 0.2: UI. This parameter is measured with the equivalent of a zero jitter reference clock See Notes 2 and 3. TTX-EYEMEDIAN- Maximum time 0.125 UI Jitter is defined as the	TX-EYE		0.75		UI	
jitter can be derived TTX-MAX-JITTER 1 - TTX-EYE = 0.2: UI. This parameter i measured with the equivalent of a zero jitter reference clock See Notes 2 and 3. TTX-EYEMEDIAN- Maximum time 0.125 UI Jitter is defined as the		Eye Width				
TTX-MAX-JITTER 1 - TTX-EYE = 0.2: UI. This parameter is measured with the equivalent of a zero jitter reference clock See Notes 2 and 3. TTX-EYEMEDIAN- Maximum time 0.125 UI Jitter is defined as the second se						
TTX-EYEMEDIAN- Maximum time 1 - TTX-EYE = 0.22 UI. This parameter is measured with the equivalent of a zero jitter reference clock. See Notes 2 and 3. UI. This parameter is measured with the equivalent of a zero jitter reference clock. See Notes 2 and 3.						jitter can be derived as
UI. This parameter is measured with the equivalent of a zero jitter reference clock See Notes 2 and 3. TTX-EYEMEDIAN- Maximum time 0.125 UI Jitter is defined as the						TTX-MAX-JITTER =
measured with the equivalent of a zero jitter reference clock See Notes 2 and 3. TTX-EYEMEDIAN- Maximum time 0.125 UI Jitter is defined as the						1 - TTX - EYE = 0.25
equivalent of a zero jitter reference clock See Notes 2 and 3. TTX-EYEMEDIAN- Maximum time 0.125 UI Jitter is defined as the						UI. This parameter is
jitter reference clock See Notes 2 and 3. TTX-EYEMEDIAN- Maximum time 0.125 UI Jitter is defined as the						measured with the
See Notes 2 and 3. TTX-EYEMEDIAN- Maximum time 0.125 UI Jitter is defined as the						equivalent of a zero
TTX-EYEMEDIAN- Maximum time 0.125 UI Jitter is defined as the						jitter reference clock.
						See Notes 2 and 3.
to-MAXJITTER between the measurement variation	YEMEDIAN-	Maximum time		0.125	UI	Jitter is defined as the
	AXJITTER	between the				measurement variation
jitter median and of the crossing point	ji	itter median and				of the crossing points
maximum $(VTX-DIFF = 0 V)$		maximum				(VTX-DIFF = 0 V)
deviation from in relation to recove		deviation from				in relation to recovered
the median.		the median.				TX UI. To be
measured after the						measured after the
clock recovery						clock recovery
function.						function.
See Notes 2 and 3.						See Notes 2 and 3.
TTX-RISE, D+/D- TX 0.125 UI See Notes 2 and 5.	X-RISE,	D+/D- TX	0.125		UI	See Notes 2 and 5.
TTX-FALL Output	X-FALL	Output				
Rise/Fall Time	1	Rise/Fall Time				
VTX-CM-ACp RMS AC Peak 20 mV VTX-CM-ACp =	-CM-ACp	RMS AC Peak		20	mV	VTX-CM-ACp =
Common Mode RMS(VTX-D+ +	(Common Mode				RMS(VTX-D+ +
Output Voltage VTX-D- /2 -	(Output Voltage				VTX-D- /2 –
VTX-CM-DC)						VTX-CM-DC)
VTX-CM-DC =						VTX-CM-DC =
DC(avg) of VTX-D		7				DC(avg) of VTX-D+
+VTX-D- /2						+VTX-D- /2
See Note 2.						See Note 2.
VTX-CM-DCACTIVE- Absolute Delta 0 100 mV VTX-CM-DC [duri	I-DCACTIVE-	Absolute Delta	0	100	mV	VTX-CM-DC [during
IDLEDELTA of DC Common L0] – VTX-CM-Idle	EDELTA 0	of DC Common		 		L0] – VTX-CM-Idle-

_	1				
	Mode Voltage				DC[During Electrical
	During L0 and				Idle.] <= 100 mV
	Electrical Idle.				VTX-CM-DC =
					DC(avg) of VTX-D+
					+VTX-D- /2 [L0]
					VTX-CM-Idle-DC=
					DC(avg) of VTX-D++
					VTX-D- /2 [Electrical
					Idle]
					See Note 2.
VTX-CM-DCLINE-	Absolute Delta	0	25	mV	VTX-CM-DC-D+ -
DELTA	of DC Common			,	VTX-CM-DC-D-
	Mode Voltage				<=25 mV
	between D+ and				VTX-CM-DC-D+=
	D-				DC(avg) of VTX-D+
					VTX-CM-DC-D- =
					DC(avg) of VTX-D-
					See Note 2.
VTX-IDLE-DIFFp	Electrical Idle	0	20	mV	VTX-IDLE-DIFFp =
	Differential				VTX-Idle-D+ -
	Peak				VTx-Idle-D- $ $ <= 20
	Output Voltage				mV
					See Note 2.
VTX-RCVDETECT	The amount of	,	600	mV	The total amount of
	voltage change				voltage change that a
	allowed during				Transmitter can apply
	Receiver				to sense whether a low
	Detection				impedance Receiver is
					present.
VTX-DC-CM	The TX DC	0	3.6	V	The allowed DC
	Common Mode				Common
	Voltage				Mode voltage under
					any
7/					conditions.

GL9701 PCI Express TM to PCI Bridge

ITX-SHORT	TX Short Circuit		90	mA	The total current the
11A-SHORT	Current Limit		90	ША	Transmitter can
	Current Limit				
					provide when shorted
					to its ground.
TTX-IDLE-MIN	Minimum time	50		UI	Minimum time a
	spent in			4	Transmitter must be in
	Electrical Idle				Electrical Idle Utilized
					by the Receiver to start
					looking for an
					Electrical
					Idle Exit after
					successfully
					receiving an Electrical
					Idle
					ordered set.
TTX-IDLE-SETTO-	Maximum time		20	UI	After sending an
IDLE	to transition to a				Electrical
	valid Electrical				Idle ordered set, the
	Idle after				Transmitter must meet
	sending an				all
	Electrical Idle				Electrical Idle
	ordered set				specifications
					within this time. This
					is
					considered a debounce
					time for the
					Transmitter to meet
					Electrical Idle after
					transitioning from L0.
TTX-IDLE-TODIFF-	Maximum time		20	UI	Maximum time to
DATA	to transition to				meet all TX
	valid TX				specifications when
	specifications				transitioning from
	after leaving an				Electrical Idle to

	1	ı		1		
	Electrical Idle					sending differential
	condition					data. This is
						considered a debounce
						time for the TX to
						meet all TX
						specifications
						after leaving Electrical
						Idle.
RLTX-DIFF	Differential	10			dB	Measured over 50
	Return Loss				5)	MHz to
						1.25 GHz.
						See Note 4.
RLTX-CM	Common Mode	6			dB	Measured over 50
	Return Loss					MHz to
						1.25 GHz.
						See Note 4.
ZTX-DIFF-DC	DC Differential	80	100	120	Ω	TX DC Differential
	TX Impedance					Mode low impedance.
						See Note 6.
LTX-SKEW	Lane-to-Lane			500 + 2 UI	ps	Static skew between
	Output Skew					any two Transmitter
						Lanes within a single
						Link.
CTX	AC Coupling	75		200	nF	All Transmitters shall
	Capacitor					be AC coupled. The
						AC coupling is
						required either within
						the media or within the
						transmitting
						component itself.
Tcrosslink	Crosslink	0		1	ms	This random timeout
	Random					helps
	Timeout					resolve conflicts in
						crosslink configuration

GL9701 PCI ExpressTM to PCI Bridge

		by eventually resulting
		in only one
		Downstream and one
		Upstream Port.

Notes:

- 1. No test load is necessarily associated with this value.
- 2. Specified at the measurement point into a timing and voltage compliance test load and measured using the clock recovery function.
- 3. A TTX-EYE = 0.75 UI provides for a total sum of deterministic and random jitter budget of TTX-JITTER-MAX = 0.25 UI for the Transmitter using the clock recovery function. The TTX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total TX jitter budget using the clock recovery function. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. This parameter is measured with the equivalent of a zero jitter reference clock. The TTX-EYE measurement is to be met at the target bit error rate. The TTX-EYE-MEDIAN-to-MAX-JITTER is to be met using the compliance pattern at a sample size of 1,000,000 UI.
- 4. The Transmitter input impedance shall result in a differential return loss greater than or equal to 10 dB with a differential test input signal no less than 200 mV (peak value, 400 mV differential peak to peak) swing around ground applied to D+ and D- lines and a common mode return loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements is 50 Ω to ground for both the D+ and D- line. Note that the series capacitors CTX is optional for the return loss measurement.
- 5. Measured between 20-80% at Transmitter package pins into a test load for both VTX-D+ and VTX-D-.
- 6. ZTX-DIFF-DC is the small signal resistance of the transmitter measured at a DC operating point that is equivalent to that established by connecting a 100 Ω resistor from D+ and D- while the TX is driving a static logic one or logic zero. Equivalently, this parameter can be derived by measuring the RMS voltage of the TX while transmitting a test pattern into two different differential terminations that are near 100 Ω . Small signal resistance is measured by forcing a small change in differential voltage and dividing this by the corresponding change in current.

7.3 Differential Receiver (RX) Input Specification

The following table defines the specification of parameters for all differential Receivers (RXs). The parameters are specified at the component pins.

Symbol	Parameter	Min	Тур	Max	Units	Comments
	Unit Interval	399.88	400	400.12	ps	The UI is 400 ps +/- 300 ppm. UI
						does not account for SSC dictated
						variations.
						See Note 7.
VRX-DIFFp-p	Differential	0.175		1.2	V	VRX-DIFFp-p =
	Input Peak to					2* VRX-D+ -VRX-D-
	Peak Voltage				75	See Note 8.
TRX-EYE	Minimum	0.4			UI	The maximum interconnect
	Receiver Eye					media and Transmitter jitter that can
	Width					be tolerated by the Receiver can be
						derived as TRX-MAX-JITTER =
						1 - TRX-EYE = 0.6 UI.
						See Notes 8, 9, and 10.
TRX-EYE-MEDI	Maximum time		7_	0.3	UI	Jitter is defined as the measurement
AN-to-	between the	3 (variation of the crossing points
MAX-JITTER	jitter median					(VRX-DIFFp-p = 0 V) in relation
	and maximum					to a recovered TX UI. To be
	deviation from					measured after the clock recovery
	the median.					function.
						See Notes 8 and 9.
VRX-CM-ACp	AC Peak			150	mV	VRX-CM-AC =
	Common Mode					VRX-D+ + VRX-D- /2 -
	Input Voltage					VRX-CM-DC
						VRX-CM-DC = DC(avg) of
						VRX-D++ VRX-D- /2
•						See Note 8.
RLRX-DIFF	Differential	10			dB	Measured over 50 MHz to
	Return Loss					1.25 GHz.
						See Note 11.
RLRX-CM	Common Mode	6			dB	Measured over 50 MHz to

GL9701 PCI Express TM to PCI Bridge

		1	1	1	1	
	Return Loss					1.25 GHz.
						See Note 11.
ZRX-DIFF-DC	DC Differential	80	100	120	Ω	RX DC Differential Mode
	Input					impedance.
	Impedance					See Note 12.
ZRX-DC	DC Input	40	50	60	Ω	Required RX D+ as well as D- DC
	Impedance					impedance (50 Ω +/- 20% tolerance).
						See Notes 8 and 12.
ZRX-HIGH-IMP-	Powered Down	200k			Ω	Required RX D+ as well as D- DC
DC	DC Input					impedance when the Receiver
	Impedance					terminations do not have power.
						See Note 13.
VRX-IDLE-DET-	Electrical Idle	65		175	mV	VRX-IDLE-DET-DIFFp-p =
DIFFp-p	Detect					2* VRX-D+ - VRX-D-
	Threshold					Measured at the package
						pins of the Receiver.
TRX-IDLE-DET-	Unexpected			10	ms	An unexpected Electrical
DIFFENTERTIM	Electrical Idle					Idle (VRX-DIFFp-p <
E	Enter Detect					VRX-IDLEDET- DIFFp-p) must be
	Threshold					recognized no longer than
	Integration					TRX-IDLE-DET-DIFF-ENTERTIM
	Time					E to signal an unexpected idle
						condition.
LRX-SKEW	Total Skew			20	ns	Skew across all Lanes on a Link.
						This includes variation in the length
						of a SKP ordered set (e.g., COM and
						one to five SKP Symbols) at the RX
						as well as any delay differences
						arising from the interconnect itself.

- 7. No test load is necessarily associated with this value.
- 8. Specified at the measurement point and measured using the clock recovery function. If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered using the clock recovery function specified in Section 4.3.3.2 must be used as a reference for the eye diagram.
- 9. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total 0.64. It should be noted that the median

is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.

The RX UI recovered using the clock recovery function must be used as the reference for the eye diagram. This parameter is measured with the equivalent of a zero jitter reference clock. The TRX-EYE measurement is to be met at the target bit error rate. The TRX-EYE-MEDIAN-to-MAX-JITTER specification is to be met using the compliance pattern at a sample size of 1,000,000 UI.

- 10. See the PCI Express Jitter and BER white paper for more details on the Rx-Eye measurement.
- 11. The Receiver input impedance shall result in a differential return loss greater than or equal to 10 dB with a differential test input signal of no less than 200 mV (peak value, 400 mV differential peak to peak) swing around ground applied to D+ and D- lines and a common mode return loss greater than or equal to 6 dB (no bias required) over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference impedance for return loss measurements for is 50 Ω to ground for both the D+ and D- line. Note that the series capacitors CTX is optional for the return loss measurement.
- 12. Impedance during all LTSSM states. When transitioning from a Fundamental Reset to Detect (the initial state of the LTSSM) there is a 5 ms transition time before Receiver termination values must be met on all un-configured Lanes of a Port.
- 13. The RX DC Common Mode Impedance that exists when no power is present or Fundamental Reset is asserted. This helps ensure that the Receiver Detect circuit will not falsely assume a Receiver is powered on when it is not. This term must be measured at 200 mV above the RX ground.

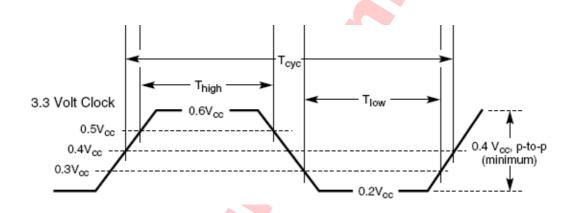
7.4 PCI Interface DC Specifications

Symbol	Parameter	Condition	Min.	Max	Units	Notes
Vcc	Supply Voltage		3.0	3.6	V	
Vih	Input High Voltage		0.5Vcc	Vcc + 0.5	V	
Vil	Input Low Voltage		-0.5	0.3Vcc	V	
Vipu	Input Pull-up		0.7Vcc		V	1
	Voltage					
Iil	Input Leakage	0 < Vin < Vcc		+10	μΑ	2
	Current					
Voh	Output High Voltage	$Iout = -500\mu A$	0.9Vcc		V	
Vol	Output Low Voltage	$Iout = 1500 \mu A$		0.1Vcc	V	
Cin	Input Pin			10	pF	3
	Capacitance					
Cclk	CLK Pin		5	12	pF	

	Capacitance					
CIDSEL	IDSEL Pin			8	pF	4
	Capacitance					
Lpin	Pin Inductance			20	nĤ	5
IOff	PME# input leakage	$Vo \leq 3.6 V$	-	1	μΑ	6
		Vcc off or				
		floating			7	

Notes:

- 1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Applications sensitive to static power utilization must assure that the input buffer is conducting minimum current at this input voltage.
- 2. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.
- 3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK, SMBDAT, and SMBCLK) with an exception granted to system board-only devices up to 16 pF in order to accommodate PGA packaging. This would mean, in general, that components for add-in cards need to use alternatives to ceramic PGA packaging; i.e., PQFP, SGA, etc. Pin capacitance for SMBCLK and SMBDAT is not specified; however, the maximum capacitive load is specified for the add-in card in Section 8.2.5.
- 4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].
- 5. This is a recommendation, not an absolute requirement. The actual value should be provided with the component data sheet.
- 6. This input leakage is the maximum allowable leakage into the PME# open drain driver when power is removed from Vcc of the component. This assumes that no event has occurred to cause the device to attempt to assert PME#.


7.5 PCI Interface AC Specifications

Symbol	Parameter	Condition	Min.	Max	Units	Notes
Ioh(AC)	Switching	$0 < \text{Vout} \leq 0.3 \text{Vcc}$	-12Vcc		mA	1
	Current High	0.3Vcc <vout<0.9vcc< th=""><th>-17.1(Vcc-Vout)</th><th></th><th>mA</th><th>1</th></vout<0.9vcc<>	-17.1(Vcc-Vout)		mA	1
		0.7Vcc < Vout < Vcc		Eqt'n C		1, 2
Iol(AC)	Switching	Vcc >Vout ≥0.6Vcc	16Vcc		mA	1
	Current Low	0.6Vcc>Vout>0.1Vcc	26.7Vout		mA	1
		0.18Vcc>Vout>0		Eqt'n D		1, 2

Icl	Low Clamp	-3 < Vin ≤-1	-25+(Vin+1)/0.015		mA	
	Current					
Ich	High Clamp	$Vcc+4 > Vin \ge Vcc+1$	25+(Vin-Vcc-1)/0.015		mA	
	Current					
slewr	Output Rise	0.2Vcc - 0.6Vcc load	1	4	V/ns	3
	Slew Rate					
slewf	Output Fall	0.6Vcc - 0.2Vcc load	1	4	V/ns	3
	Slew Rate					

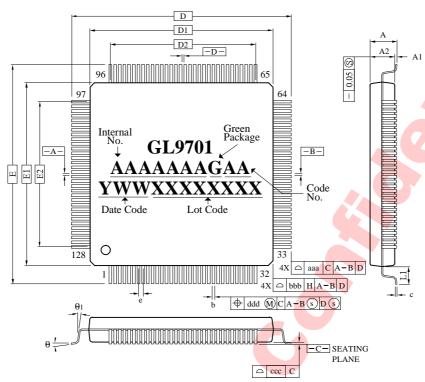
7.6 Clock and Reset Specifications

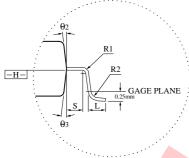
Symbol	Parameter	Min	Max	Units	Notes
Тсус	CLK Cycle Time	30	∞	ns	1
Thigh	CLK High Time	11		ns	
Tlow	CLK Low Time	11		ns	
-	CLK Slew Rate	1	4	V/ns	2
-	RST#SlewRate	50	-	mV/ns	3

Notes:

1. In general, all PCI components must work with any clock frequency between nominal DC and 33 MHz.

Device operational parameters at frequencies under 16 MHz may be guaranteed by design rather than by testing. The clock frequency may be changed at any time during the operation of the system so long as the clock edges remain "clean" (monotonic) and the minimum cycle and high and low times are not violated. For example, the use of spread spectrum techniques to reduce EMI emissions is included in this requirement.




Refer to Section 7.6.4.1 for the spread spectrum requirements for 66 MHz. The clock may only be stopped in a low state. A variance on this

- specification is allowed for components designed for use on the system board only. These components may operate at any single fixed frequency up to 33 MHz and may enforce a policy of no frequency changes.
- 2. Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met across the minimum peak-to-peak portion of the clock waveform as shown in Figure 4-7.
- 3. The minimum RST# slew rate applies only to the rising (deassertion) edge of the reset signal and ensures that system noise cannot render an otherwise monotonic signal to appear to bounce in the switching range. RST# waveforms and timing are discussed in Section 4.3.2.

CHAPTER 8 Package Dimension

NOTES :

- 1. DIMENSIONS DI AND EI DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. DI AND EI ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- 2. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM b DIMENSION BY MORE THAN 0.08mm. DAMBAR CAN NOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.

CONTROL DIMENSIONS ARE IN MILLIMETERS.

SYMBOL	MI	LLIMET	`ER	INCH			
SIMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
A		_	1.60	_	_	0.063	
A1	0.05	_	0.15	0.002	_	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
D	16	.00 BAS	IC	0.630 BASIC			
E	16	.00 BAS	IC	0.630 BASIC			
D1	14	.00 BAS	IC	0.551 BASIC			
E1	14.00 BASIC			0.551 BASIC			
D2	12.40 BASIC			0.4	0.488 BASIC		
E2	12	.40 BAS	IC	0.488 BASIC			
R1	0.08	_	_	0.003	_	_	
R2	0.08	_	0.20	0.003	_	0.008	
θ	0	3.5	7	0	3.5	7	
θ1	0	_	_	0		_	
θ2	11	12	13	11	12	13	
θ3	11	12	13	11	12	13	
С	0.09	_	0.20	0.004	_	0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00 REI	7	0.039 REF			
S	0.20	-	_	0.008	_	_	
b	0.13	0.16	0.23	0.005	0.006	0.009	
e 0.40 BASIC			0.016 BASIC				
TOLERANCES OF FORM AND POSITION							
aaa	0.20			0.008			
bbb	0.20			0.008			
ccc	0.08			0.003			
ddd	0.07			0.003			

Figure 8.1 – GL9701 128 Pin LQFP Package

CHAPTER 9 ORDERING INFORMATION

Table 9.1—Ordering Information

Part Number	Package	Green	Version	Status
GL9701-MXG	128-pin LQFP	Green Package	XX	Available

