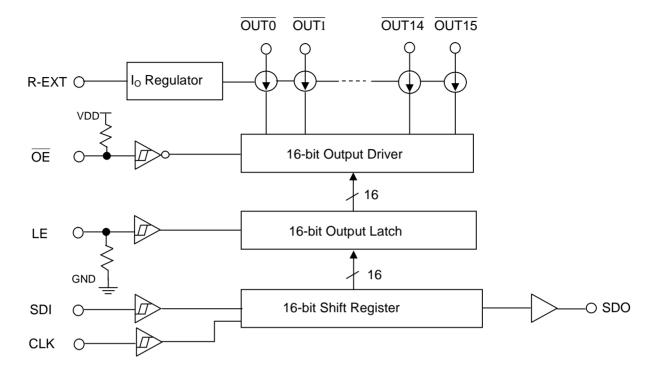


16-bit Constant Current LED Sink Driver

Features

- 16 constant-current output channels
- Constant output current invariant to load voltage change : Constant output current range: 3-50 mA
- Excellent output current accuracy: between channels: ±3% (max.), and between ICs: ±6% (max.)
- Output current adjusted through an external resistor
- Fast response of output current, OE (min.): 400 ns
- 25MHz clock frequency
- Schmitt trigger input
- 3.3V / 5V supply voltage

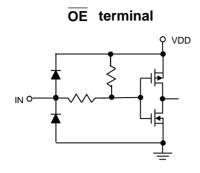

Current	Accuracy	Conditions
Between Channels Between ICs		Conditions
< ±3%	< ±6%	I _{OUT} = 3 mA ~ 35 mA

Product Description

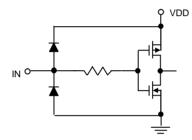
MBI5025 is designed for LED displays. As an enhancement of its predecessor, MBI5016, MBI5025 exploits PrecisionDrive[™] technology to enhance its output characteristics. MBI5025 contains a serial buffer and data latches which convert serial input data into parallel output format. At MBI5025 output stage, sixteen regulated current ports are designed to provide uniform and constant current sinks for driving LEDs within a large range of Vf variations.

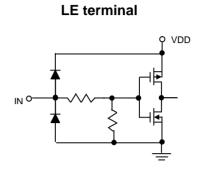
MBI5025 provides users with great flexibility and device performance while using MBI5025 in their system design for LED display applications, e.g. LED panels. Users may adjust the output current from 3 mA to 35 mA through an external resistor, R_{ext} , which gives users flexibility in controlling the light intensity of LEDs. MBI5025 guarantees to endure maximum 17V at the output port. The high clock frequency, 25 MHz, also satisfies the system requirements of high volume data transmission.

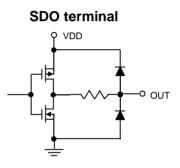
Block Diagram

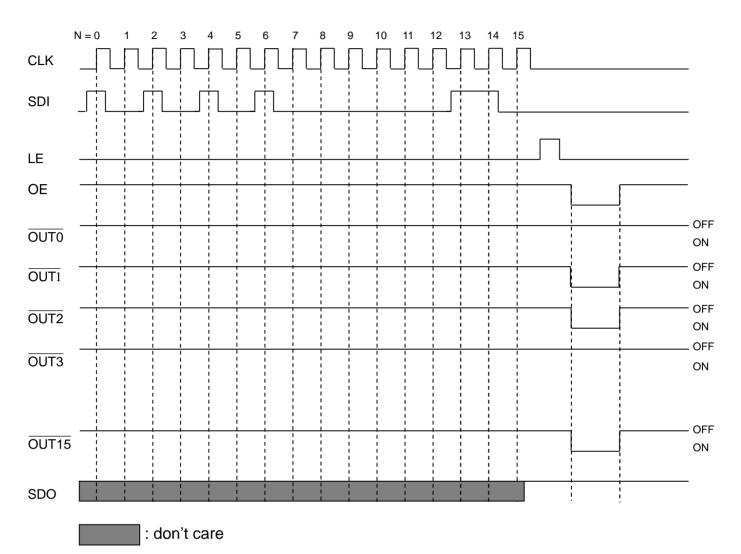

Terminal Description

Pin No.	Pin Name	Function
1	GND	Ground terminal for control logic and current sink
2	SDI	Serial-data input to the shift register
3	CLK	Clock input terminal for data shift on rising edge
		Data strobe input terminal
4	LE	Serial data is transferred to the output latch when LE is high. The data is latched when LE goes low.
5~20	$\overline{OUT0} \sim \overline{OUT15}$	Constant current output terminals
21	ŌĒ	Output enable terminal When (active) low, the output drivers are enabled; when high, all output drivers are turned OFF (blanked).
22	SDO	Serial-data output to the following SDI of next driver IC
23	R-EXT	Input terminal used to connect an external resistor for setting up output current for all output channels
24	VDD	3.5V / 5V supply voltage terminal


Pin Configuration


	_
GND 1 24 SDI 2 23 CLK 3 22 LE 4 21 OUTO 5 20 OUT1 6 19 OUT2 7 18 OUT3 8 17 OUT4 9 16 OUT5 10 15 OUT5 10 15 OUT6 11 14 OUT7 12 13	R-EXT SDO OE OUT15 OUT14 OUT13 OUT12 OUT11 OUT11 OUT11 OUT11 OUT11 OUT11 OUT10 OUT19


Equivalent Circuits of Inputs and Outputs



MBI5025

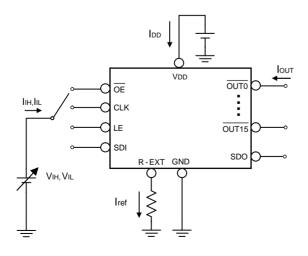
Timing Diagram

Truth Table

CLK	LE	ŌĒ	SDI	OUT0 OUT 7 OUT15	SDO	
	н	L	D _n	$\overline{Dn} \dots \overline{Dn-7} \dots \overline{Dn-15}$	D _{n-15}	
	L	L	D _{n+1}	No Change	D _{n-14}	
	Н	L	D _{n+2}	$\overline{Dn+2}$ $\overline{Dn-5}$ $\overline{Dn-13}$	D _{n-13}	
	Х	L	D _{n+3}	$\overline{Dn+2} \dots \overline{Dn-5} \dots \overline{Dn-13}$	D _{n-13}	
—	Х	Н	D _{n+3}	Off	D _{n-13}	

Maximum Ratings

Characte	Symbol	Rating	Unit	
Supply Voltage		V _{DD}	0~7.0	V
Input Voltage		V _{IN}	-0.4~V _{DD} + 0.4	V
Output Current		I _{OUT}	+50	mA
Output Voltage		V _{DS}	-0.5~+20.0	V
Clock Frequency		F _{CLK}	25	MHz
GND Terminal Current		I _{GND}	1440	mA
Operating Temperature	Operating Temperature		-40~+85	°C
Storage Temperature		T _{stg}	-55~+150	°C
	CN – type		53.82	
CNS – type			66.74	
Thermal Resistance (On PCB, Ta=25°C)	CD– type	R _{th(j-a)}	49.81	°C/W
	CF – type		59.01	
	CP – type		72.43	

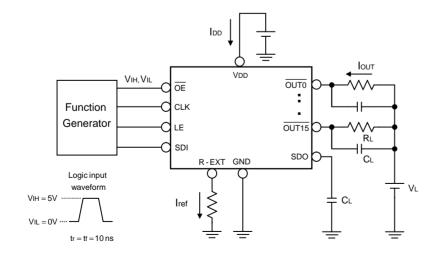

Recommended Operating Conditions

Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	V _{DD}		4.5	5.0	5.5	V
Supply vollage	V DD	-	3.0	3.3	3.6	v
Output Voltage	V_{DS}	OUT0~ OUT15	-	-	17.0	V
	I _{OUT}	DC Test Circuit	3	-	35	mA
Output Current	I _{OH}	SDO	-	-	-1.0	mA
	I _{OL}	SDO	-	-	1.0	mA
Input Voltage	V _{IH}	CLK, \overline{OE} , LE and SDI	$0.8V_{DD}$	-	V _{DD} +0.3	V
	V _{IL}	CLK, $\overline{\text{OE}}$, LE and SDI	-0.3	-	$0.3V_{\text{DD}}$	V
LE Pulse Width	t _{w(L)}		40	-	-	ns
CLK Pulse Width	$t_{w(CLK)}$		20	-	-	ns
OE Pulse Width	t _{w(OE)}	V _{DD} =4.5~5.5V	400	-	-	ns
Setup Time for SDI	$t_{su(D)}$	v _{DD} -4.3~3.3 v	5	-	-	ns
Hold Time for SDI	t _{h(D)}		10	-	-	ns
Setup Time for LE	t _{su(L)}		15	-	-	ns
Hold Time for LE	t _{h(L)}		15	-	-	ns
Clock Frequency	F _{CLK}	Cascade Operation	-	-	25.0	MHz

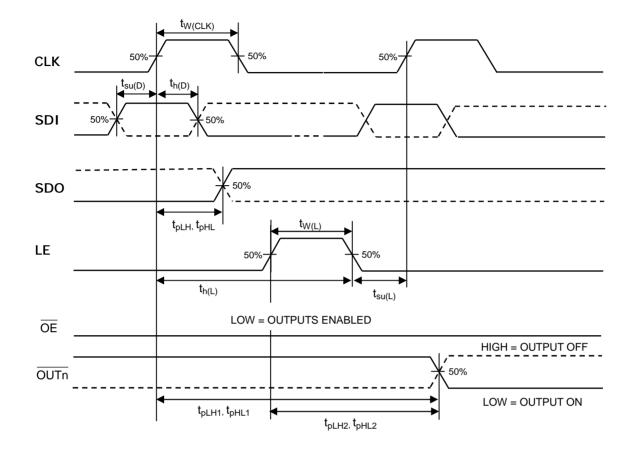
Electrical Characteristics

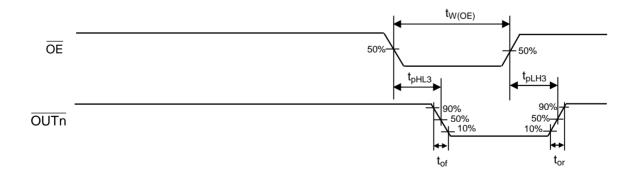
Charac	Characteristic Symbol Condition		Min.	Тур.	Max.	Unit		
Input Voltage	"H" level	V _{IH}	Ta = -40~85°C		$0.8V_{DD}$	-	V _{DD}	V
input voltage	"L" level	V _{IL}	Ta = -4	0~85°C	GND	-	$0.3V_{\text{DD}}$	V
Output Leak	age Current	I _{OH}	V _{OH} =	17.0V	-	-	0.5	μA
	SDO	V _{OL}	I _{OL} =+1.0mA		-	-	0.4	V
Output Voltage	500	V _{OH}	I _{ОН} =-1	I.0mA	4.6	-	-	V
Output C	urrent 1	I _{OUT1}	V _{DS} =0.5V	R _{ext} =1260 Ω	-	15.0	-	mA
Curren	Skew	dl _{out1}	I _{OL} =15mA V _{DS} =0.5V R _{ext} =1260 Ω		-	±1	±3	%
Output C	urrent 2	I _{OUT2}	V _{DS} =0.8V R _{ext} =620 Ω		-	30.0	-	mA
Curren	Skew	dl _{out2}	I _{OL} =30mA V _{DS} =0.8V R _{ext} =620 Ω		-	±1	±3	%
Output Curren Output Voltage		%/dV _{DS}	V _{DS} within 1.	0V and 3.0V	-	±0.1	-	% / V
Output Curren Supply Voltage		%/dV _{DD}	V _{DD} within 4.	5V and 5.5V	-	±1	-	% / V
Pull-up Resis	tor	R _{IN} (up)	ŌĒ		250	500	800	KΩ
Pull-down Re	Pull-down Resistor		LE		250	500	800	ΚΩ
		I _{DD} (off) 1	R _{ext} =Open, <u>OUT0</u> ~ <u>OUT15</u> =Off		-	9	-	
Supply Current	"OFF"	I _{DD} (off) 2	R _{ext} =1260 Ω, ō	UT0 ~ OUT15 =Off	-	10	-	
		I _{DD} (off) 3	R _{ext} =620 Ω, ō	UT0 ~ OUT15 =Off	-	11	-	mA
	"ON"	I _{DD} (on) 1	R _{ext} =1260 Ω, ō	UT0 ~ OUT15 =On	-	10	-	
		I _{DD} (on) 2	R _{ext} =620 Ω,	UT0 ~ OUT15 =On	-	11	-	

Test Circuit for Electrical Characteristics



Switching Characteristics

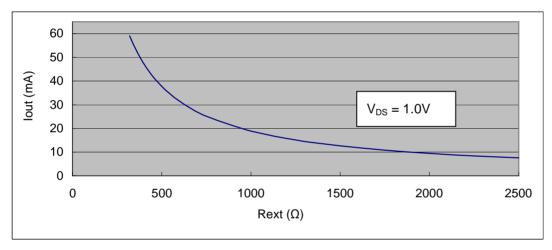

Characteristic		Symbol	Condition	Min.	Тур.	Max.	Unit
	CLK - OUTn	t _{pLH1}	-	-	50	100	ns
Propagation Delay Time	LE - OUTn	t _{pLH2}		-	50	100	ns
("L" to "H")	OE - OUTn	t _{pLH3}		-	20	100	ns
	CLK - SDO	t _{pLH}		15	20	-	ns
	CLK - OUTn	t _{pHL1}	V _{DD} =5.0 V V _{DS} =0.8 V	-	100	150	ns
Propagation Delay Time	LE - OUTn	t _{pHL2}	V _{IH} =V _{DD}	-	100	150	ns
("H" to "L")	OE - OUTn	t _{pHL3}	$V_{IL}=GND$ $R_{ext}=300 \Omega$ $V_{L}=4.0 V$ $R_{L}=52 \Omega$ $C_{L}=10 \text{ pF}$	-	50	150	ns
	CLK - SDO	t _{pHL}		15	20	-	ns
	CLK	t _{w(CLK)}		20	-	-	ns
Pulse Width	LE	t _{w(L)}		20	-	-	ns
	ŌĒ	$t_{w(OE)}$		400	-	-	ns
Hold Time for	LE	t _{h(L)}		5	-	-	ns
Setup Time fo	r LE	t _{su(L)}		5	-	-	ns
Maximum CLK Rise Time		tr**		-	-	500	ns
Maximum CLK Fall Time		t _f **		-	-	500	ns
Output Rise Time of Iout		t _{or}		-	70	200	ns
Output Fall Time	of lout	t _{of}		-	40	120	ns


% If the devices are connected in cascade and t_r or t_f is large, it may be critical to achieve the timing required for data transfer between two cascaded devices.

Test Circuit for Switching Characteristics

Timing Waveform

Application Information


Constant Current

To design LED displays, MBI5025 provides nearly no variations in current from channel to channel and from IC to IC. This can be achieved by:

- 1) The maximum current variation between channels is less than $\pm 3\%$, and that between ICs is less than $\pm 6\%$.
- 2) In addition, the current characteristic of output stage is flat and users can refer to the figure as shown below. The output current can be kept constant regardless of the variations of LED forward voltages (Vf). This performs as a perfection of load regulation.

Adjusting Output Current

The output current of each channel (I_{OUT}) is set by an external resistor, R_{ext} . The relationship between I_{out} and R_{ext} is shown in the following figure.

Resistance of the external resistor, R_{ext} , in Ω

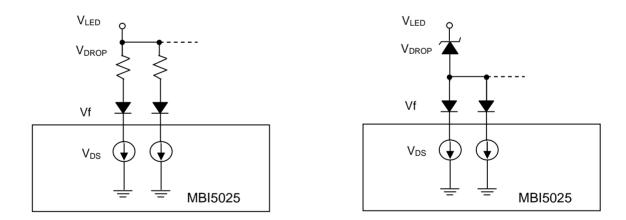
Also, the output current can be calculated from the equation:

 $V_{R-EXT} = 1.26V$; $I_{OUT} = (V_{R-EXT} / R_{ext}) \times 15$

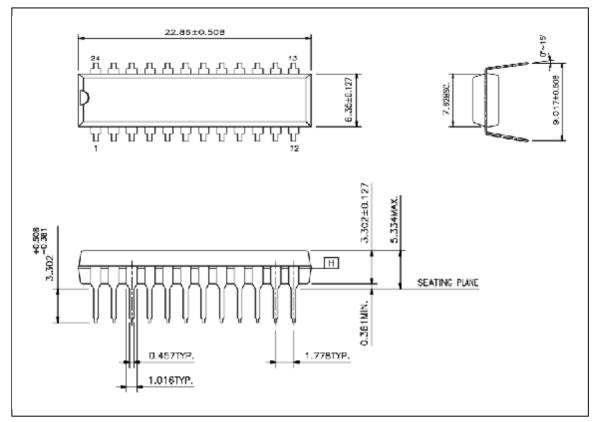
where R_{ext} is the resistance of the external resistor connected to R-EXT terminal and V_{R-EXT} is the voltage of R-EXT terminal. The magnitude of current (as a function of R_{ext}) is around 30mA at 620 Ω and 15mA at 1260 Ω .

Package Power Dissipation (PD)

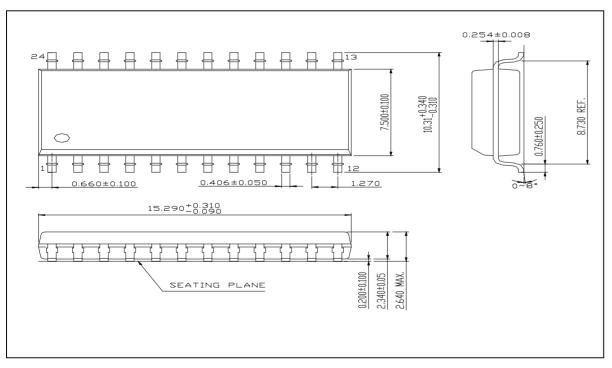
The maximum allowable package power dissipation is determined as $P_D(max) = (Tj - Ta) / R_{th(j-a)}$. When 16 output channels are turned on simultaneously, the actual package power dissipation is $P_D(act) = (I_{DD} \times V_{DD}) + (I_{OUT} \times Duty \times V_{DS} \times 16)$. Therefore, to keep $P_D(act) \le P_D(max)$, the allowable maximum output current as a function of duty cycle is:

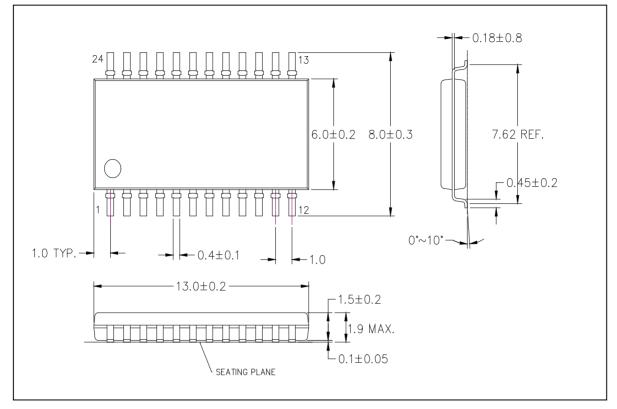

 $I_{OUT} = \{ [(Tj - Ta) / R_{th(j-a)}] - (I_{DD} \times V_{DD}) \} / V_{DS} / Duty / 16, where Tj = 150°C.$

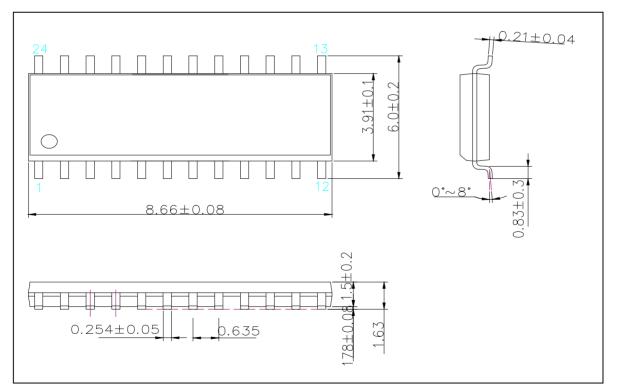
Load Supply Voltage (V_{LED})


MBI5025 are designed to operate with V_{DS} ranging from 0.4V to 0.8V (I_{OUT}=5~35mA) considering the package power dissipating limits. V_{DS} may be higher enough to make $P_{D(act)} > P_{D(max)}$ when V_{LED} = 5V and V_{DS} = V_{LED} - Vf, in which V_{LED} is the load supply voltage. In this case, it is recommended to use the lowest possible supply voltage or to set an external voltage reducer, V_{DROP}.

A voltage reducer lets $V_{DS} = (V_{LED} - Vf) - V_{DROP}$.


Resistors or Zener diode can be used in the applications as shown in the following figures.


Package Outline


MBI5025CNS Outline Drawing

MBI5025CD Outline Drawing

MBI5025CF Outline Drawing

MBI5025CP Outline Drawing