Semicustom

CMOS

Embedded array

CE81 Series

■ DESCRIPTION

The CE81 series $0.18\,\mu m$ CMOS embedded array is a line of highly integrated CMOS ASICs featuring high speed and low power consumption.

This series incorporates up to 34 million gates which have a gate delay time of 12 ps, resulting in both integration and speed about three times higher than conventional products.

In addition, CE81 series can operate at a power-supply voltage of down to 1.1 V, substantially reducing power consumption.

■ FEATURES

- Technology: 0.18 μm silicon-gate CMOS, 3- to 5-layer wiring
- Supply voltage : + 1.8 V \pm 0.15 V (normal) to + 1.1 V \pm 0.1 V
- Junction temperature range : -40 to +125 °C
- Gate delay time : $t_{pd} = 12 ps (1.8 V, inverter, F/O = 1)$
- Gate power consumption: Pd = 8 nW/MHz/BC (1.1 V, 2-NAND, F/O = 1)
- High-load driving capability: IoL = 2/4/8/12 mA mixable
- Output buffer cells with noise reduction circuits
- Inputs with on-chip input pull-up/pull-down resistors (33 k Ω typical) and bidirectional buffer cells
- Buffer cells dedicated to crystal oscillator
- Special interface: P-CML, LVDS, PCI, AGP, USB, SDRAM-I/F, SSTL, and others (including those under development)
- IP macros: CPU, DSP, PCI, IEEE1394, USB, IrDA, PLL, ADC, DAC, and others (including those under development)
- Capable of incorporating compiled cells (RAM/ROM/multiplier, and others)
- · Configurable internal bus circuits
- Advanced hardware/software co-design environment
- Short-term development using a timing driven layout tool
- Support for static timing sign-off

Dramatically reducing the time for generating test vectors for timing verification and the simulation time

(Continued)

(Continued)

- Hierarchical design environment for supporting large-scale circuits
- Simulation (before layout) considering the input slew rate and detailed RC delay calculation (after layout) , supporting development with minimized timing trouble after trial manufacture
- Support for memory (RAM/ROM) SCAN
- Support for memory (RAM) BIST
- · Support for boundary SCAN
- · Support for path delay test
- A variety of package options (TQFP, HQFP, EBGA, FBGA, TAB-BGA, LQFP)

■ MACRO LIBRARY (Including macros being prepared)

1. Logic cells (about 800 types)

Adder

Decoder

• AND-OR Inverter

• Non-SCAN Flip Flop

Clock Buffer

Inverter

• Latch

Buffer

NAND

• OR-AND Inverter

• AND

• OR

NOR

Selector

• SCAN Flip Flop

BUS Driver

• ENOR

• EOR

• AND-OR

Others

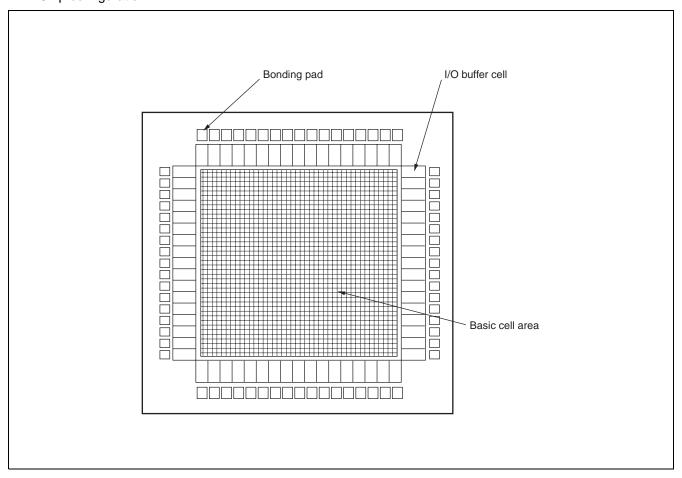
2. IP macros

CPU/DSP	FR, SPARClite, standard CPU (under preparation) Communications DSP, DSP for AV
Interface macro	PCI, IEEE1394, USB, IrDA, etc.
Multimedia processing macros	JPEG, MPEG, etc.
Mixed signal macros	ADC, DAC, OPAMP, etc.
Compiled macros	RAM, ROM, multiplier, adder, multiplier-accumulator, etc.
PLL	Analog PLL, digital PLL

3. Special I/O interface macros

- T-LVTTL
- SSTL
- HSTL
- P-CML

- LVDS
- PCI
- AGP
- USB


• IEEE1394

■ CHIP STRUCTURE

The chip layout of the CE81 series consists of two major areas : chip peripheral area and basic cell area.

The chip peripheral area contains the input/output buffer cells for interfacing with external devices and the associated bonding pads. The basic cell area contains some of input/output buffer cells, the unit cells and the compiled cells.

• Chip configuration

■ COMPILED CELLS

Compiled cells are macro cells which are automatically generated with the bit/word configuration specified. The CE81 series has the following types of compiled cells (Note that each macro is different in word/bit range depending on the column type) .

1. Clock synchronous single-port RAM (1 address : 1 RW)

High density/Partial write type

Column type	Memory capacity	Word range	Bit range	Unit
4	16 to 72 K	16 to 1 K	1 to 72	Bit
16	64 to 72 K	64 to 4 K	1 to 18	Bit

High speed type

Column type	Memory capacity	Word range	Bit range	Unit
8	256 to 144 K	64 to 2 K	4 to 72	Bit

• Large scale partial write type

Column type	Memory capacity	Word range	Bit range	Unit
16	24.5 K to 1179 K	4 to 16 K	6 to 72	Bit

2. Clock synchronous dual-port RAM (2 addresses : 1 RW, 1 R)

• High density/Partial write type

Column type	Memory capacity	Word range	Bit range	Unit
4	16 to 72 K	16 to 1 K	1 to 72	Bit
16	64 to 72 K	64 to 4 K	1 to 18	Bit

3. Clock synchronous register file (3 addresses : 1 W, 2 R)

Column type	Memory capacity	Word range	Bit range	Unit
1	4608	4 to 64	1 to 72	Bit

4. Clock synchronous register file (4 addresses : 2 W, 2 R)

Column type	Memory capacity	Word range	Bit range	Unit
1	4608	4 to 64 K	1 to 72	Bit

5. Clock synchronous ROM (1 addresses : 1 R)

Column type	Memory capacity	Word range	Bit range	Unit
16	256 to 512 K	128 to 4 K	2 to 128	Bit

6. Clock synchronous delay line memory (2 addresses : 1 W, 1 R)

Column type	Memory capacity	Word range	Bit range	Unit
8	256 to 32 K	32 to 1 K	8 to 32	Bit
16	384 to 32 K	64 to 2 K	6 to 16	Bit
32	512 to 32 K	128 to 4 K	4 to 8	Bit

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ra	ting	Unit
Parameter	Symbol	Min	Max	Onit
Cupply voltoge*1	V _{DD}	0.5	+2.5 *2	V
Supply voltage*1	V DD	-0.5	+4.0 *3	- V
Input voltage*1	Vı	-0.5	$V_{DD}+0.5 \ (\le 2.5 \ V)^{*2}$	V
Input voltage*1	VI	-0.5	$V_{DD}+0.5 \ (\le 4.0 \ V)^{*3}$	7 V
Output voltage*1	Vo	-0.5	$V_{DD}+0.5 \ (\le 2.5 \ V)^{*2}$	V
Output voltage*1	VO	-0.5	$V_{DD}+0.5 \ (\le 4.0 \ V)^{*3}$	7 V
Storage temperature	Tst	- 55	+125	°C
Junction temperature	Tj	-40	+125	°C
Output current *4	lo	_	±4	mA
Input signal transmitting rate	Rı	_	Clock Input *5 : 200 Normal Input : 100	Mbps *6
Output signal transmitting rate	Ro	_	100	Mbps *6
Output load capacitance	Со	_	3000/Ro	pF
Continuous time of indefinite input signal	tz	_	10	ms
Supply pin current	lσ		*7	mA

^{*1 :} The parameter is based on Vss = 0 V.

^{*7 :} Supply pin current for one VDD/GND pin

Frame	Source type	Maximum c	Number of	
Frame	Source type	Standard source	Additional source	layer
	VDDE, VDDI, VDD, VSS	68	68	4, 5
YS/S, YI/I	VDDE	39	39	3
	V _{DDI} , V _{DD} , V _{SS}	68	68	3
Α	VDDE, VDDI, VDD, VSS	34	34	_
В	VDDE, VDDI, VDD, VSS	43	30	_

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2 :} Internal gate part in case of signal power supply or dual power supply

^{*3:} I/O part in case 3.3 V I/F or 2.5 V I/F is used by dual power supply

^{*4 :} DC current which continues more than 10 ms, or average DC current

^{*5 :} In case of using I/O cell for clock input

^{*6 :} bps = bit per second

■ RECOMMENDED OPERATING CONDITIONS

• Single power supply (V_{DD} = + 1.8 V \pm 0.15 V)

(Vss = 0 V)

Parameter	Symbol	Value			Unit
Farameter	Syllibol	Min	Тур	Max	Oilit
Supply voltage (1.8 V supply voltage)	V _{DD}	1.65	1.8	1.95	V
"H" level input voltage (1.8 V CMOS)	ViH	$V_{DD} \times 0.65$	_	V _{DD} + 0.3	V
"L" level input voltage (1.8 V CMOS)	VıL	-0.3	_	$V_{DD} \times 0.35$	V
Junction temperature	Tj	-40		+125	°C

• Dual power supply (V_DDE = + 3.3 V \pm 0.3 V, V_DDI = + 1.8 V \pm 0.15 V)

(Vss = 0 V)

Paran	Parameter			Unit			
Faiaii			Min	Тур	Max	Offic	
Supply voltage	1.8 V supply voltage	V _{DDI}	1.65	1.8	1.95	V	
Supply voltage	3.3 V supply voltage	V _{DDE}	3.0	3.3	3.6	V	
"H" level input voltage	1.8 V CMOS	ViH	$V_{\text{DD}} \times 0.65$	_	V _{DDI} + 0.3	V	
Tri lever input voltage	3.3 V CMOS	VIH	2.0	_	V _{DDE} + 0.3]	
"L" level input voltage	1.8 V CMOS	VIL	-0.3	_	$V_{DD} \times 0.35$	V	
L level input voitage	3.3 V CMOS	VIL	-0.3	_	+0.8		
Junction temperature		Tj	-40	_	+125	°C	

• Dual power supply (V_DDE = + 3.3 V \pm 0.3 V, V_DDI = + 1.5 V \pm 0.1 V / + 1.1 V \pm 0.1 V)

(Vss = 0 V)

Parameter		Symbol		Unit		
		Syllibol	Min	Тур	Max	Oille
	V _{DDE}	3.0	3.3	3.6	V	
Supply voltage		V _{DDI}	1.0	1.1	1.2	V
		וטט ע	1.4	1.5	1.6	V
"H" level input voltage	3.3 V CMOS	ViH	2.0		VDDE + 0.3	V
"L" level input voltage	3.3 V CMOS	Vıl	-0.3		+0.8	V
Junction temperature		Tj	-40	_	+125	°C

• Dual power supply (V_DDE = $\,+$ 2.5 V \pm 0.2 V, V_DDI = $\,+$ 1.8 V \pm 0.15 V)

(Vss = 0 V)

Parameter		Symbol		Unit		
Falai	i didilictoi		Min	Тур	Max	Oilit
Supply voltage	Complexialters			2.5	2.7	V
Supply voltage		V _{DDI}	1.65	1.8	1.95	V
"H" level input voltage	1.8 V CMOS	Vih	$V_{DDI} imes 0.65$	_	V _{DDI} + 0.3	V
Tr lever input voitage	2.5 V CMOS	VIH	1.7		VDDE + 0.3	V
"L" level input voltage	1.8 V CMOS	VIL	-0.3		$V_{DDI} imes 0.35$	V
L lever input voltage	2.5 V CMOS	VIL	-0.3	_	+0.7	V
Junction temperature	Junction temperature		-40		+125	°C

• Dual power supply (V_{DDE} = + 2.5 V \pm 0.2 V, V_{DDI} = + 1.5 V \pm 0.1 V / + 1.1 V \pm 0.1 V)

(Vss = 0 V)

Parameter		Symbol		Unit		
		Syllibol	Min	Тур	Max	Offic
	V _{DDE}	2.3	2.5	2.7	V	
Supply voltage		V _{DDI}	1.0	1.1	1.2	V
			1.4	1.5	1.6	V
"H" level input voltage	2.5 V CMOS	ViH	1.7	_	VDDE + 0.3	V
"L" level input voltage	2.5 V CMOS	Vıl	-0.3		+0.7	V
Junction temperature		Tj	-40	_	+125	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

1. DC CHARACTERISTICS

• Static supply current (single power supply/Dual power supply)

A frame

Frame	A4	A5	A6	A7	A8	A9	AA	AB	AC	AD	AE
CATLG value [mA]	0.5	0.7	1	1.4	2	2.6	3.3	4	4.6	5.3	6.6

S frame

Frame	SA	SB	SC	SD	SE	SF	SG
CATLG value [mA]	3.7	4.4	5	5.8	7.1	9.2	10.9

I frame

Frame	I1	12	13	14	15	16	17	18	19	IA
CATLG value [mA]	0.3	0.4	0.6	0.7	0.8	1.2	1.5	2	2.8	3.4

Note: When the memory is in a standby mode and analog macro is in a power-down mode. At both cases, conditions are $V_{IH} = V_{DD}$, $V_{IL} = V_{SS}$, and $T_j = +25$ °C. The above values may not be guaranteed when the input buffer with a pull-up/pull-down resister or a crystal oscillator buffer is used.

The above values may not be guaranteed when a High-speed cell library is used.

• Single power supply : VDD = 1.8 V

$$(V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_{j} = -40 \,^{\circ}\text{C} \text{ to } +125 \,^{\circ}\text{C})$$

Parameter	Symbol	Conditions			Unit	
raiailletei	Syllibol	Conditions	Min	Тур	Max	Ullit
Supply current	IDDS	_		_	*	mA
"H" level output voltage	Vон	Іон = -100 μА	V _{DD} - 0.2		V _{DD}	V
"L" level output voltage	Vol	Ιοι = 100 μΑ	0	_	0.2	V
"H" level output V-I characteristics	_	$V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}$	_	_	_	_
"L" level output V-I characteristics	_	$V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}$	_		_	
Input leakage current	l.	_	_		±5	μΑ
Pull-up/pull-down resistance	R₽	Pull-up V _{IL} = 0 Pull-down V _{IH} = V _{DD}	_	18	_	kΩ

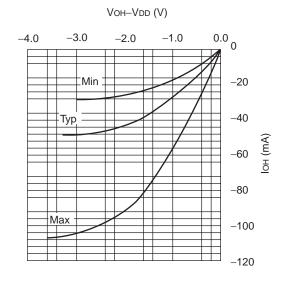
^{*:} Refer to the table on the previous page "Static supply current (single power supply/Dual power supply)".

• Dual power supply : $V_{DDE} = 3.3 \text{ V}$, $V_{DDI} = 1.8 \text{ V} / 1.5 \text{ V} / 1.1 \text{ V}$ ($V_{DDE} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{DDI} = 1.8 \text{ V} \pm 0.15 \text{ V} / 1.5 \text{ V} \pm 0.1 \text{ V} / 1.1 \text{ V} \pm 0.1 \text{ V}$, $V_{SS} = 0 \text{ V}$, $V_{j} = -40 \text{ °C to } +125 \text{ °C}$)

Davamatar	Cumb al	Canditions		Value		I Imit
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply current	IDDS	_	_	_	*1	mA
"L" lovel output voltage	V _{OH4}	3.3 V output IoH = -100 μA	V _{DDE} - 0.2	_	V _{DDE}	V
"H" level output voltage	V _{OH2}	1.8 V output Ioн = -100 μA	V _{DDI} – 0.2	_	V _{DDI}	V
"L" level output voltage	V _{OL4}	3.3 V output IoL = 100 μA	0	_	0.2	V
	V _{OL2}	1.8 V output IoL = 100 μA	0	_	0.2	V
"H" level output V-I characteristics		3.3 V VDDE = 3.3 V±0.3 V		*2		_
n leveroutput v-i characteristics		1.8 V V _{DDI} = 1.8 V±0.15 V		_		
"I " lovel output \/ I characteristics	loL	3.3 V VDDE = 3.3 V±0.3 V				
"L" level output V-I characteristics	IOL	1.8 V VDDE = 1.8 V±0.15 V		_		
Input leakage current	l.	_	_	_	±5	μΑ
Pull-up/pull-down resistance	R₽	1.8 V Pull up V _{IL} = 0 Pull down V _{IH} = V _{DDI}	— 18		_	- kΩ
	KP	$\begin{array}{l} 3.3 \text{ V} \\ \text{Pull up V}_{\text{IL}} = 0 \\ \text{Pull down V}_{\text{IH}} = V_{\text{DDE}} \end{array}$	10 33 80		1 K22	

^{*1 :} Refer to the table on the previous page "Static supply current (single power supply/Dual power supply)".

^{*2 :} Refer to the " \bullet V-I Characteristics" Fig. 1, Fig. 2.


• Dual power supply : $V_{DDE} = 2.5 \text{ V}$, $V_{DDI} = 1.8 \text{ V} / 1.5 \text{ V} / 1.1 \text{ V}$ ($V_{DDE} = 2.5 \text{ V} \pm 0.2 \text{ V}$, $V_{DDI} = 1.8 \text{ V} \pm 0.15 \text{ V} / 1.5 \text{ V} \pm 0.1 \text{ V} / 1.1 \text{ V} \pm 0.1 \text{ V}$, $V_{SS} = 0 \text{ V}$, $V_{j} = -40 \text{ °C to } +125 \text{ °C}$)

Daramatar	Symbol	Conditions		Value		Unit		
Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Supply current	IDDS	_	_	_	*	mA		
"H" level output voltage	Vонз	2.5 V output IoH = -100 μA	V _{DDE} - 0.2	_	V _{DDE}	V		
	V _{OH2}	1.8 V output IoH = -100 μA	V _{DDI} – 0.2	_	V _{DDI}	V		
"L" level output voltage	Volз	2.5 V output IoL = 100 μA	0	_	0.2	V		
	V _{OL2}	1.8 V output IoL = 100 μA	0	_	0.2	V		
"L" lovel output \/ Leberceteristics	la	2.5 V VDDE = 2.5 V±0.2 V		_		_		
"H" level output V-I characteristics	Іон	1.8 V V _{DDI} = 1.8 V±0.15 V		_				
"L" level output V-I characteristics	loL	2.5 V VDDE = 2.5 V±0.2 V		_				
L level output v-i characteristics	IOL	1.8 V V _{DDI} = 1.8 V±0.15 V		_				
Input leakage current	l.	_	_	_	±5	μΑ		
Pull-up/pull-down	R₽	1.8 V Pull up V _{IL} = 0 Pull down V _{IH} = V _{DDI}	_	18	_	- kΩ		
resistance	K P	2.5 V Pull up V _{IL} = 0 Pull down V _{IH} = V _{DDE}	_	25	_	- K22		

^{*:} Refer to the table on the previous page "Static supply current (single power supply/Dual power supply)".

• V-I Characteristics

Min : Process = Slow, $T_j = +125$ °C, $V_{DD} = 3.6$ V Typ : Process = Typical, $T_j = +25$ °C, $V_{DD} = 3.3$ V Max : Process = Fast, $T_j = -40$ °C, $V_{DD} = 3.0$ V

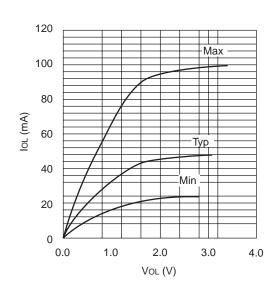
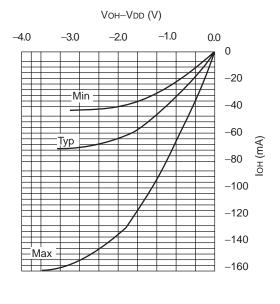



Fig.1 V-I characteristics (3.3 V normal I/O L, M type)

Min : Process = Slow, T_j = + 125 °C, V_{DD} = 3.6 V Typ : Process = Typical, T_j = + 25 °C, V_{DD} = 3.3 V Max : Process = Fast, T_j = -40 °C, V_{DD} = 3.0 V

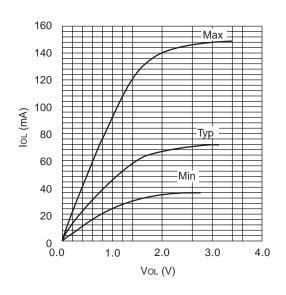


Fig.2 V-I characteristics (3.3 V normal I/O H, V type)

2. AC Characteristics

 $(V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_{j} = -40 \,^{\circ}\text{C} \text{ to } +125 \,^{\circ}\text{C})$

Parameter	Symbol	Rating					
Farameter	Symbol	Min	Тур	Max	Unit		
Delay time	t _{pd} *1	typ*2 × tmin*3	typ*2 × ttyp*3	typ*2 × tmax*3	ns		

^{*1 :} Delay time = propagation delay time, Enable time, Disable time

^{*3:} Measurement conditions.

Measurement condition	tmin	ttyp	tmax
$V_{DD} = 2.5 \text{ V} \pm 0.2 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_{j} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	0.60	1.00	1.64
$V_{DD} = 1.8 \text{ V} \pm 0.15 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_{j} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	0.84	1.57	2.84
$V_{DD} = 1.5 \text{ V} \pm 0.1 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ T}_{j} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	1.14	2.22	4.09

Note: $t_{pd\ max}$ is calculated according to the maximum junction temperature (T_j) .

■ INPUT/OUTPUT PIN CAPACITANCE

 $(f = 1 \text{ MHz}, V_{DD} = V_1 = 0 \text{ V}, Ta = +25 ^{\circ}C)$

Parameter	Symbol	Value	Unit
Input pin	Cin	Max 16	pF
Output pin	Соит	Max 16	pF
I/O pin	Cı/o	Max 16	pF

Note: Capacitance varies according to the package and the location of the pin.

■ DESIGN METHOD

Linking a floor plan tool and a logic synthesis tool enables automatic circuit optimization using floor plan information. In addition, also available are CDDM (Clock Driven Design Method) clock tree synthesis tools using floor plan information. Using floor plan information at a pre-layout stage prevents major problems with setup and hold timings which can occur after layout. Using a hierarchical layout method to support larger-scale circuit design considerably shortens the overall design cycle time.

^{*2: &}quot;typ" is calculated based on the cell specification.

■ PACKAGES

The table below lists the package types available and the reference number of gates used. Consult Fujitsu for the combination of each package and the availability.

• Number of gates used and package types

1 8	kage & Count	Pin Pitch (mm)	0 2000k 4000k 6000k 8000k 10000k 12000k 14000k 16000k 18000k 20000k
TAB-BGA	304	0.80	—— 891k
	352	0.80	—— 1254k
	480	1.00	—— 1905k
	560	1.00	—— 2689k
	660	1.00	—— 3609k
	720	1.00	—— 9129k
E B G A	576 660 672	1.27 1.00 1.27	5982k 7952k 12727k
H Q F P	208	0.50	— 1098k
	240	0.50	— 2085k
	256	0.40	— 3764k
	304	0.50	— 4712k
	304	0.50	— 15158k
T Q F P	100	0.50	— 514k
	120	0.40	— 514k
L Q F P	144	0.50	— 722k
	176	0.50	— 963k
	208	0.50	— 1098k
F B G A	112 176 192 240 272 288	0.80 0.80 0.80 0.50 0.80 0.75	— 514k — 722k — 1098k — 1550k — 2697k

Note: The packages that can be used depend on the circuit configuration. For details, contact Fujitsu.

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.