TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC564AP,TC74HC564AF,TC74HC574AP,TC74HC574AF

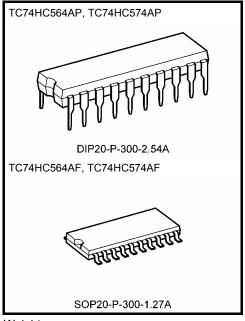
Octal D-Type Filp-Flop with 3-State Output

TC74HC564AP/AF Inverting

TC74HC574AP/AF Non-Inverting

The TC74HC564A and HC574A are high speed CMOS OCTAL FLIP-FLOPs with 3-STATE OUTPUT fabricated with silicon gate C^2MOS technology.

They achieve the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

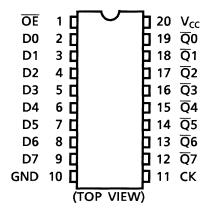

These 8-bit D-type flip-flops are controlled by a clock input (CK) and an output enable input (\overline{OE}).

The TC74HC564A has inverting outputs, and the TC74HC574A has non-inverting outputs.

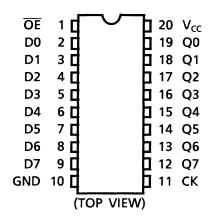
All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

- High speed: $f_{max} = 62 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max)}$ at $T_{a} = 25 \text{°C}$
- High noise immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (min)
- Output drive capability: 15 LSTTL loads
- Symmetrical output impedance: $|I_{OH}| = I_{OL} = 6 \text{ mA (min)}$
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: V_{CC} (opr) = 2 to 6 V
- Pin and function compatible with 74LS564/574

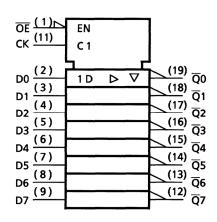


Weight

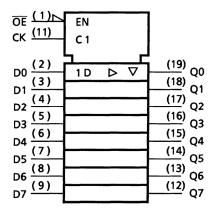

DIP20-P-300-2.54A : 1.30 g (typ.) SOP20-P-300-1.27A : 0.22 g (typ.)

Pin Assignment

TC74HC564A



TC74HC574A



IEC Logic Symbol

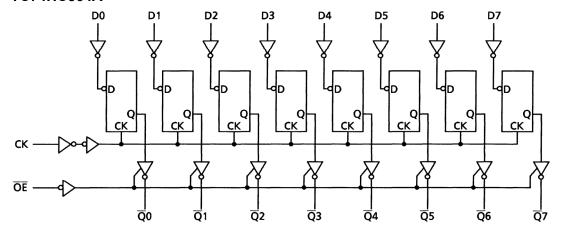
TC74HC564A

TC74HC574A

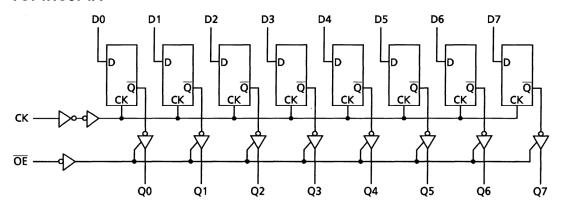
Truth Table

Inputs			Outputs				
ŌĒ	CK	D	Q (574A)	Q (564A)			
Н	Х	Х	Z	Z			
L	\rightarrow	Х	Qn	\overline{Q}_n			
L		L	L	Н			
L		Н	Н	L			

X: Don't care


Z: High impedance

 $Q_n(\overline{Q}_n)$: No change



System Diagram

TC74HC564A

TC74HC574A

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	–0.5 to 7	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	lok	±20	mA
DC output current	lout	±35	mA
DC V _{CC} /ground current	Icc	±75	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = -40 to $65^{\circ}C$. From Ta = 65 to $85^{\circ}C$ a derating factor of -10 mW/°C shall be applied until 300 mW.

3 2007-10-01

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
		0 to 1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0 to 500 (V _{CC} = 4.5 V)	ns
		0 to 400 (V _{CC} = 6.0 V)	

Note: The operating ranges must be maintained to ensure the normal operation of the device.
Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition		Ta = 25°C			Ta = -40 to 85°C		Unit	
Sharastonstics	1 1		V _{CC} (V)	Min	Тур.	Max	Min	Max	O.I.I.	
		_		2.0	1.50	_	_	1.50	_	
High-level input voltage	V _{IH}			4.5	3.15	_	_	3.15	_	V
ŭ				6.0	4.20	_	_	4.20	_	
				2.0	_	_	0.50		0.50	
Low-level input voltage	V _{IL}	_		4.5	_	_	1.35		1.35	V
, and the second				6.0	_	_	1.80	_	1.80	
				2.0	1.9	2.0	_	1.9	_	
	V _{ОН}	VIN = VIH or VIL	$I_{OH} = -20 \mu A$	4.5	4.4	4.5	_	4.4	_	
High-level output voltage				6.0	5.9	6.0	_	5.9	_	٧
			$I_{OH} = -6 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	
			$I_{OH} = -7.8 \text{ mA}$	6.0	5.68	5.80	_	5.63	_	
	V _{OL}	V _{IN} = V _{IH} or V _{IL}		2.0	_	0.0	0.1	_	0.1	
			$I_{OL} = 20 \mu A$	4.5	_	0.0	0.1	_	0.1	
Low-level output voltage				6.0	_	0.0	0.1	_	0.1	V
			I _{OL} = 6 mA	4.5	_	0.17	0.26	_	0.33	
			$I_{OL} = 7.8 \text{ mA}$	6.0	_	0.18	0.26	_	0.33	
3-state output off-state current	loz	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or GND		6.0	_	_	±0.5	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND		6.0			±0.1		±1.0	μА
Quiescent supply current	Icc	V _{IN} = V _{CC} or GND		6.0	_	_	4.0	_	40.0	μА

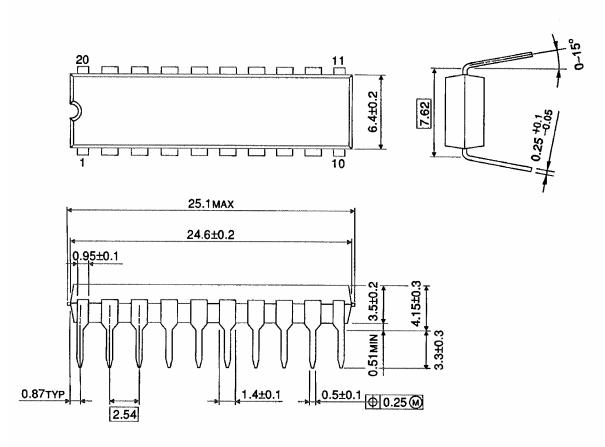
Timing Requirements (input: $t_r = t_f = 6 \text{ ns}$)

Characteristics	Symbol	Test Condition	Ta = 25°C		Ta = -40 to 85°C	Unit		
			V _{CC} (V)	Тур.	Limit	Limit		
Minimum pulse width	tu an		2.0	_	75	95		
(CK)	t _{W (H)}	_	4.5	_	15	19	ns	
(CK)	t _{W (L)}		6.0	_	13	16		
Minimum act un timo	ts		2.0	_	75	95	ns	
Minimum set-up time (Dn)		_	4.5	_	15	19		
(ווטו)			6.0	_	13	16		
Minimum hold time	t _h		2.0	_	0	0	ns	
		_	4.5	_	0	0		
(Dn)			6.0	_	0	0		
	f		2.0	_	6	5		
Clock frequency		_	4.5	_	31	24	MHz	
			6.0		36	28		

AC Characteristics (input: $t_r = t_f = 6$ ns)

Characteristics	Symbol	Test Condition		-	Га = 25°C		Ta = -40 to 85°C		Unit	
	- ,		CL (pF)	V _{CC} (V)	Min	Тур.	Max	Min	Max	
	,			2.0	_	25	60	_	75	
Output transition time	t _{TLH}	_	50	4.5	_	7	12	_	15	ns
	t _{THL}			6.0	_	6	10	_	13	
				2.0	_	70	150	_	190	
			50	4.5	_	20	30	_	38	
Propagation delay time	t_{pLH}			6.0	_	15	26	_	33	
(CK-Q, \overline{Q})	t_{pHL}	_		2.0	_	88	190	_	240	ns
(331 4)			150	4.5	_	25	38	_	48	
				6.0	_	19	33	_	41	
	^t pZL ^t pZH	R _L = 1 kΩ	50	2.0	_	48	125	_	155	- ns
				4.5	_	15	25	_	31	
Output enable time				6.0	_	12	21	_	26	
Output enable time			150	2.0	_	60	165	_	205	
				4.5	_	20	33	_	41	
				6.0	_	16	28	_	35	
				2.0	_	34	125	_	155	
Output disable time	t _{pLZ}	$R_L = 1 \text{ k}\Omega$	50	4.5	_	17	25	_	31	ns
	t _{pHZ}			6.0	_	15	21	_	26	
				2.0	6	17	_	5	_	
Maximum clock frequency	f_{max}	_	50	4.5	31	50	_	24	_	MHz
,,				6.0	36	59	_	28	_	
Input capacitance	C _{IN}	_		_	5	10	_	10	pF	
Output capacitance	C _{OUT}	_	-		_	10	_	_	_	pF
Power dissipation capacitance	C _{PD} (Note)	_	_		_	54	_	_	_	pF

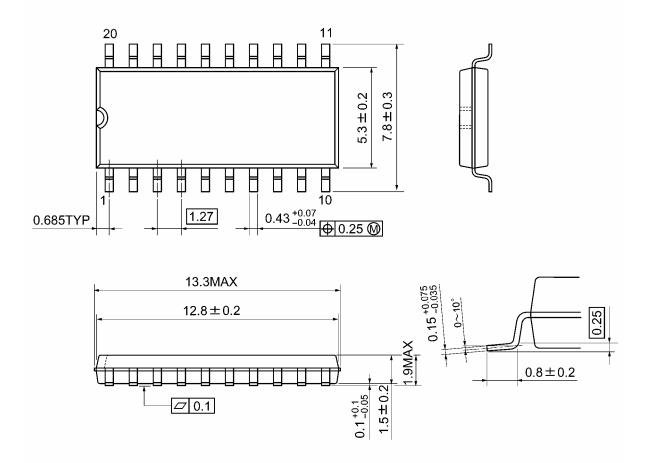
Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8$ (per bit)

And the total CPD when n pcs. of flip flop operate can be gained by the following equation:

$$C_{PD}$$
 (total) = 39 + 15 · n


Package Dimensions

Weight: 1.30 g (typ.)

Package Dimensions

SOP20-P-300-1.27A Unit: mm

8

Weight: 0.22 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.