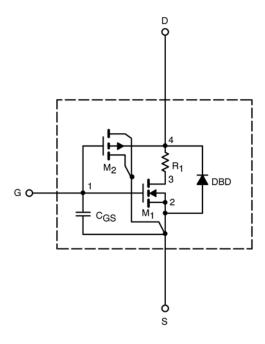


SPICE Device Model Si5404BDC Vishay Siliconix

N-Channel 2.5-V (G-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

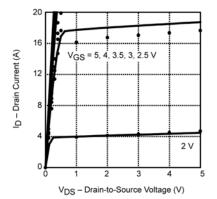
Document Number: 73127 www.vishay.com 08-Sep-04 1

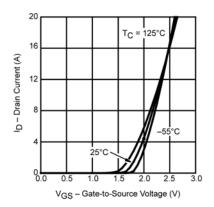
SPICE Device Model Si5404BDC

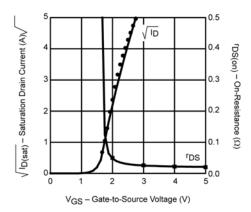
Vishay Siliconix

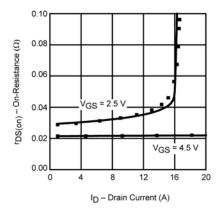
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS}~\geq 5~V,~V_{GS}$ = 4.5 V	100		Α
Drain-Source On-State Resistance ^a	r	V_{GS} = 4.5 V, I_{D} = 5.4 A	0.022	0.022	Ω
	r _{DS(on)}	V _{GS} = 2.5 V, I _D = 2.6 A	0.030	0.031	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 10 \text{ V}, I_{D} = 5.4 \text{ A}$	45	26	S
Forward Voltage ^a	V_{SD}	$I_S = 1.1 \text{ A}, V_{GS} = 0 \text{ V}$	0.78	0.70	V
Dynamic ^b					
Total Gate Charge	Q_g	V_{DS} = 10 V, V_{GS} = 4.5 V, I_{D} = 5.4 A	6.8	7	nC
Gate-Source Charge	Q_{gs}		1.7	1.7	
Gate-Drain Charge	Q_{gd}		2	2	

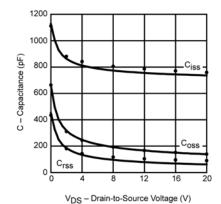
Notes

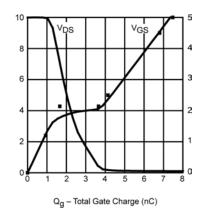

www.vishay.com Document Number: 73127


Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. Guaranteed by design, not subject to production testing.




SPICE Device Model Si5404BDC Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.