Legacy Device: Motorola MC12079

The ML12079 is a single modulus divide by $64,128,256$ prescaler for low power frequency division of a 2.8 GHz (typical) high frequency input signal. Divide ratio control inputs SW1 and SW2 select the required divide ratio of $\div 64, \div 128$, or $\div 256$.
An external load resistor is required to terminate the output. A 1.2 $\mathrm{k} \Omega$ resistor is recommended to achieve a 1.6 V pp output swing, when dividing a 1.1 GHz input signal by the minimum divide ratio of 64 , assuming a 12 pF load. Output current can be minimized dependent on conditions such as output frequency, capacitive load being driven, and output voltage swing required. Typical values for load resistors are included in the $\mathrm{V}_{\text {out }}$ specification for various divide ratios at 2.8 GHz input frequency.

- 2.8 GHz Toggle Frequency
- Supply Voltage 4.5 to 5.5 V
- Low Supply Current 9 mA Typical at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Operating Temperature Range of $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$

FUNCTIONAL TABLE

SW1	SW2	Divide Ratio
H	H	64
H	L	128
L	H	128
L	L	256

NOTE: SW1 \& SW2: $\mathrm{H}=\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{Open}$.

MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Maximum Output Current, Pin 4	I_{O}	4.0	mA

Note: Lansdale lead free ($\mathbf{P b}$) product, as it becomes available, will be identified by a part number prefix change from ML to MLE

PIN CONNECTIONS

(Top View)

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave)	$f t$	0.25	3.4	2.8	GHz
Supply Current Output (Pin 2)	ICC	-	9.0	11.5	mA
	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	-	$\begin{aligned} & \hline 1000 \\ & 1000 \end{aligned}$	mVpp
Divide Ratio Control Input High (SW)	V_{IH}	VCC	VCC	VCC	V
Divide Ratio Control Input Low (SW)	V_{IL}	Open	Open	Open	-
Output Voltage Swing $\begin{array}{r} \left(C_{L}=12 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega ; \mathrm{I}_{\mathrm{l}}=2.7 \mathrm{~mA}\right)^{\mathbf{1}} \\ \left(\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega ; \mathrm{IO}_{2}=1.5 \mathrm{~mA}\right)^{\mathbf{2}} \\ \left(\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega ; \mathrm{I}_{\mathrm{l}}=0.85 \mathrm{~mA}\right)^{3} \end{array}$	$V_{\text {out }}$	1.0	1.6	-	V_{pp}

NOTES: 1. Divide ratio of $\div 64$ at 2.8 GHz .
2. Divide ratio of $\div 128$ at 2.8 GHz .
3. Divide ratio of $\div 256$ at 2.8 GHz .

Figure 1. Logic Diagram (ML12079)

Figure 2. AC Test Circuit

Figure 3. Input Signal Amplitude versus Input Frequency

Figure 4. Output Amplitude versus Input Frequency

OUTLINE DIMENSIONS

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.

