
Rev. 1.0 1/04 Copyright © 2004 by Silicon Laboratories AN155-DS10
Silicon Laboratories Confidential. Information contained herein is covered under non-disclosure agreement (NDA).

AN155

STEPPER MOTOR REFERENCE DESIGN

Introduction
Stepper motors are used in a wide variety of
applications. They are prevalent in consumer office
equipment such as printers, plotters, copiers, and
scanners. Stepper motors are also used in automotive
applications for electronic throttle control, dashboard
indicators, and climate control systems. Stepper motors
are also found in industrial equipment such as robotics,
electronic component handlers, testers, dispensers, and
other manufacturing equipment.
Stepper motors are often controlled using special
function ICs that provide limited control functionality.
Such ICs often employ a rudimentary step forward and
back interface to the microprocessor that limits system
performance. Other stepper motor systems are PC card
based and use a host PC to provide high performance
control.
In embedded systems it is much better to use a small
microcontroller to directly control the stepper motor. A
very small microcontroller such as the C8051F300 is
capable of providing a high performance motion control
solution. The microcontroller implements a linear-
velocity profile, generates the precise timing required,
and outputs the stepping pattern used to drive the
motor. The microcontroller directly drives the power
MOSFETs and no addition gate drive circuitry is
required.
The microcontroller also provides serial
communications for remote control and distributed
systems. This reference design uses a RS232 port
operating at 57600 bps. This demonstrates the
feasibility of using serial control. It is equally feasible to
use SMBus, I2C, RS485, or some more advanced
UART based network protocol. The C8051F300 is
housed in a very small form factor MLP11 package,
measuring only 3 mm square. The entire stepper motor
drive can easily be integrated onto the back of a small
stepper motor. A system with multiple motors may use a
single small microcontroller for each motor.
The C8051F300 is ideally suited for driving a stepper
motor. The small form factor lends itself to integrated
motor solutions. The on chip UART and SMBus provide
serial communication and control. The calibrated
internal oscillator eliminates the cost and pin-count of
using an external crystal, while providing an accurate
time base for high speed UART and precise motor

timing. The low-pin count package has enough pins to
drive the stepper motor and RS232 transceiver, with two
additional I/O pins left over for special functions.
This reference design demonstrates a high
performance stepper motor system using the
C8051F300. The reference design provides for both
stand-alone demo operation and UART control. The
reference design may also be used as a platform for
stepper motor code development using the C2D two-
wire on-chip debug and Flash programming interface.
The reference design is complete with schematic, bill of
materials, printed circuit board artwork, code flowcharts,
and source code. The software is also available for
download from the Silicon Laboratories web site.

Using the Stepper Motor Reference
Design
Quick Start
The recommended stepper motor listed in the Bill of
Materials is the GBM model number 42BYG205,
available from Jameco Electronics®. Connect the GBM
42BYG205 stepper motor to the stepper motor
reference design using the color code shown in Table 1.

Connect the 9 V DC power supply to the 2.1 mm power
connection on the stepper motor reference design. Plug
the power supply into 120 VAC power source. The LED
labeled “PWR” should illuminate.

Table 1. GBM 42BYG205 Color Code

Color Name

red A+

yellow Acommon

blue A-

green B+

orange Bcommon

brown B-

AN155

2 Rev. 1.0

Press the function switch labeled “FUNC”. The stepper
motor should turn four turns. The green status LED
labeled “STAT” should illuminate while the motor is
turning. Press the function switch again. The motor will
rotate four turns the other direction.
It the LED does not illuminate, check the power
connection. If the motor does not turn, check the motor
wiring.
If using a stepper motor other than the GBM
42BYG205, follow the color code provided with that
particular stepper motor. Note that there is no standard
color code for stepper motor wiring. It is best to double-
check the wiring with a digital multi-meter. A 30 Ω
stepper motor should measure 60 Ω from A+ to A- and
30 Ω from A+ or A- to Acommon. Phase B should
measure similarly. A high impedance should be
obtained when measuring from any phase A wire to any
phase B wire.

Setting up HyperTerminal
Connect a DB9 serial modem cable to the stepper
motor reference design RS232 connector. Connect the
other end to a serial port on the back of a Windows PC.
Note which COM port is connected to the Stepper Motor
Reference Design.
Open HyperTerminal from the start menu.
Start>Programs>Accessories>Communication>HyperT
erminal. When prompted for a new connection name,
type in StepperMotor or some other descriptive name.
In the next dialog box, click on the connect using pull-
down menu and select the appropriate COM port (e.g.
COM4). Click on OK to exit the new connection dialog
box. In the next dialog box choose 57600 bits per
second, 8 data bits, no parity, 1 stop bit, and no flow
control.
Now hit return a few times. A prompt sign and a new
line should be displayed each time the return key is
depressed. If prompt is not displayed, double-check the
connections and the serial port settings. Make sure the
stepper motor board is plugged in and powered up. To
assist in debugging, test points are conveniently
provided for the TX and RX connections on the stepper
motor reference design.

Command Line Operation
The command line parser understands three
commands. The commands are p for position, a for
acceleration, and s for status. Each command must
start with a lowercase letter. The position and
acceleration commands are followed by a number
string.

Type s and the stepper motor will display the current
position and acceleration parameter. The text following
the prompt sign is always user input.

>s
Position:
0
Acceleration:
80
>

The stepper motor will turn one complete rotation in 400
steps. Type p4000 and then hit enter. The stepper
motor will turn 10 rotations and then stop, While moving,
the terminal will display the message Moving... and
the current position of the motor. The display is updated
periodically while moving. When the move is complete
the number will stop at the final position and the
terminal will display the message done! and a
command prompt sign >.

>p4000
Moving...
Position:
4000
done!
>

Now type a120 and hit enter. The terminal will display
the new acceleration to verify the parameter change.

>a120
Acceleration:
120
>

Now type p0 and hit return. The stepper motor will
rotate ten turns the other direction at a slower rate.
A smaller number results in a faster acceleration and a
faster top speed. If you set the acceleration factor far
too small the motor will stall at the maximum slewing
speed. If the acceleration parameter marginally too
small, the motor will have very low torque in the slewing
region.
The parser will ignore any non-numeric characters
between the command letter and the first number. For
example p1000, p 1000, position 1000, and pig
1000 will all be interpreted as a position 1000
command. The parser does not understand capital
letters.
The number parsing is terminated by the first non-
numeric character. So it doesn’t really matter what you
type after the number. It could be a carriage return,
space, period, or any non-numeric character.

AN155

Rev. 1.0 3

The number parser for the position expects an unsigned
16-bit integer. You can enter any position from 0 to
65535. If you enter 65536, it will be interpreted as a
zero. The acceleration parser expects an unsigned 8-bit
integer. The range is 0 to 255. If you enter 256 it will be
interpreted as a zero. The number 257 will be
interpreted as a one. Entering a zero or a very small
integer may produce unpredictable results.

Theory of Operation
Motor Basics
The primary distinguishing feature of stepper motors is
the manner in which they are driven. Stepper motors are
moved in discrete steps. This is in contrast to other
types of motors such as d.c. and brushless d.c. motors
which are typically controlled using continuous mode
analog control methodologies. The position of a stepper
motor may be expressed using an integer. The stepping
rate in steps per second is typically used to describe the
angular velocity.
Because stepper motors are driven in discrete steps,
they excel at absolute positioning applications. The
most commonly available stepper motors move in
precise increments of 1.8° or 0.9° per step.
Stepper motors are controlled directly. The primary
command and control variable is the step position. This
is in contrast to d.c. motors where the control variable is
the motor voltage and the command variable may be
either position or velocity. A d.c. motor requires a
feedback control system and controls the position
indirectly. A stepper motor system is normally operated
“open loop”.

Stepper Motor Construction
Stepper motors may be classified by their motor
construction, drive topology, and stepping pattern.
There are several different types of stepper motor
construction. These include variable reluctance,
permanent magnet, and hybrid permanent magnet. This
reference design is applicable to the permanent magnet
and hybrid two or four phase stepper motors.
Permanent magnet stepper motors are very
inexpensive and have a large stepping angle of 7.5° to
18°. Permanent magnet stepper motors are often used
in inexpensive consumer products. Hybrid stepper
motors are a bit more expensive and have stepping
angles of 1.8° or 0.9°. Hybrid stepper motors are
predominant in industrial motion control applications.
Variable reluctance motors typically have three or five
phases and require a different drive topology. Variable
reluctance stepper motors are not addressed in this
reference design.

The most common type of stepper motor construction
used for industrial motion control is the hybrid
permanent magnet motor. The rotor is constructed
using a cylindrical permanent magnet oriented with the
north-south polarity along the rotor axis. Two laminated
end caps are used with many teeth around the
periphery. The north and south teeth are staggered to
provide many effective poles using a single permanent
magnet. The stator laminates typically have four large
forks. Each fork has many teeth. The teeth for the two
windings are also staggered to line up with the
appropriate teeth on the rotor. Using this clever
arrangement, a 200-pole motor can be constructed
using a single permanent magnet and only four stator
windings.

Drive Types
The two common drive topologies for stepper motors
are unipolar and bipolar. A unipolar drive uses four
transistors to drive the two phases of the stepper motor.
The motor has two center-tapped windings with six
wires emanating from the motor as shown in Figure 1.
This type of motor is sometimes rather confusingly
called a four-phase motor. This is not an accurate
representation as the motor really has only two phases.
A more accurate description would be a two-phase, six-
wire stepper motor. A six-wire stepper motor is also
often called a unipolar stepper motor. However, a six-
wire stepper motor could be used with either a unipolar
or bipolar drive.

Figure 1. Unipolar Stepper Motor Drive

+12V

Q1

A-

B+
B-

Q2 Q3 Q4

A+

AN155

4 Rev. 1.0

The center tap of the motor winding is connected to the
positive voltage supply. Each coil can be energized in
either direction by turning on the appropriate transistor.
The center-tapped winding acts as a transformer. So the
voltage on the unused switch will be twice the supply
voltage.
A clamped unipolar drive circuit is shown in Figure 2.
When Q1 is turned on, current will flow from the +12V
supply, through the A winding, through Q1 to ground.
When Q1 is turned off, the current will tend to continue
to flow through the winding inductance. The drain
voltage of Q1 will rise above the supply voltage. The
center-tapped winding acts as a transformer. Thus,
when the voltage on A+ reaches 24 V, the voltage on
the A- terminal will go below ground and be clamped by
the internal diode of Q2. There is also a considerable
amount of uncoupled inductance in each winding. This
will cause an additional overshoot voltage when the
transistor is turned off. The four diodes D1-D4 and the

clamp zener D5 form an effective clamp circuit to limit
the overshoot voltage. The zener voltage should be
slightly higher than twice the maximum supply voltage.

A bipolar stepper motor drive uses eight transistors to
drive the two phases as shown in Figure 3. A stepper
motor with four wires or six wires may be used with a
bipolar drive. A four-wire motor can only be used with a
bipolar drive. The four-wire motor might be marginally
less expensive in high volume applications. The bipolar
stepper motor drive uses twice as many transistors as
the unipolar stepper motor drive. The four lower
transistors can be usually be driven directly from the
microcontroller. The upper transistors require a more
expensive high-side drive. The bipolar drive transistors
only need to withstand the motor supply voltage. The
bipolar drive does not require a clamp circuit like the
unipolar drive.

+12V

Q1

A-

B+
B-

Q2 Q3 Q4

A+

D1 D2 D3 D4 D5

Figure 2. Unipolar Stepper Motor Drive with Zener Clamp

AN155

Rev. 1.0 5

The performance differences between unipolar and
bipolar drives are subtle. The unipolar drive only uses
half of the actual motor windings at any one time. Thus,
the bipolar stepper motor should theoretically have
much better performance for a given motor volume. In
practice, this is not always the case. Often the six-wire
stepper motors have a lower phase resistance and
consequently a higher holding torque for a particular
motor size. The trade-offs of unipolar versus unipolar
are summarized in Table 2.

Stepping Patterns
The two possible stepping patterns for stepper motors
are full-step and half-step. A full-step pattern has four
states and moves the motor one full step for each state.
A 1.8° stepper motor will move 1.8° for each state and

7.2° for the full pattern. A full step pattern is shown in
Table 3. In the full-step pattern, two transistors are
always on. The first two columns indicate whether the A
and B phase voltages are positive +, negative -, or high
impedance z. The next four columns indicate the state
of the four transistors for the unipolar stepper motor
shown in Figure . The last column is the state of all four
transistors expressed in hexadecimal for use with
microcontrollers.

Note that the transistor order in Table 3 has been
rearranged listing Q3 before Q2 to yield a clear pattern.
The polarity of the A and B windings is only important in
determining if the rotation of the motor is clockwise or
counter clockwise. Swapping the polarity of either
phase will change the direction of the motor. Swapping
A and B windings will result in no change of rotation.

+VM

Q2 Q3 Q4Q1

Q5 Q6 Q7 Q8

Figure 3. Bipolar Stepper Motor Drive

Table 2. Bipolar vs. Unipolar Trade-offs

Bipolar Uni-polar

number of transistors 8 4

number if high-side drivers 4 0

number of clamps 0 4

transistor voltage 1 x Vs 2.5 x Vs

winding usage 100% 50%

motor wires 4 6

Table 3. Unipolar Full-Step Pattern

A B Q1 Q3 Q2 Q4 Hex

- - 0 0 1 1 0x03

- + 0 1 1 0 0x06

+ + 1 1 0 0 0x0C

+ - 1 0 0 1 0x09

AN155

6 Rev. 1.0

Table 4 is the stepping pattern for a half step stepper
motor. The half step stepping pattern has eight states.
Four of these states only have one transistor on at any
one time. The half-step pattern allows a positioning
accuracy of 0.9° for a 1.8° stepper motor. Note that the
holding current and consequently the holding torque will
be less for the states with only one transistor on at a
time.

The step pattern for a bipolar stepper motor is similar.
Normally the diagonally opposite transistors in each H-
bridge are turned on simultaneously. Thus the stepper
pattern can be readily understood by listing the upper
transistors first in the same order as the unipolar drive.
Then the lower transistors are listed in the order
corresponding to the same pattern (13246857). The end
result is that the upper and lower nibbles of the
hexadecimal stepping pattern are identical.

Stepping Algorithm
A Linear-Velocity Profile is shown in Figure 4. The
velocity ramps up and down in the shape of a trapezoid.
The three distinct phases are named the acceleration
phase, the constant velocity or slewing phase, and the
deceleration phase. The resulting angular step position
curve n is a smooth s-shaped curve. The acceleration is
constant in the acceleration and deceleration phases.
The acceleration is zero in the slewing phase.

We would like to derive a table or step periods that will
be used to commutate the motor. The step period Tn is
defined as the difference in time between two adjacent
steps in Equation 1. The step period will be used to
control the microcontroller timer.

Equation 1

The angular acceleration is defined in Equation 2 and
the step position is defined in Equation 3. These
equations are straightforward textbook definitions for
angular velocity and position. Since the stepper motor
position moves in discrete steps the step position is an
integer denoted by the letter n instead of θ.

Equation 2

Table 4. Unipolar Half-Step Pattern

A B Q1 Q3 Q2 Q4 Hex
z - 0 0 0 1 0x01

- - 0 0 1 1 0x03

- z 0 0 1 0 0x02

- + 0 1 1 0 0x06

z + 0 1 0 0 0x04

+ + 1 1 0 0 0x0C

+ z 1 0 0 0 0x08

+ - 1 0 0 1 0x09

Table 5. Bipolar Full-Step Pattern

A B Q1 Q3 Q2 Q4 Q6 Q8 Q5 Q7 Hex
0 - 0 0 0 1 0 0 0 1 0x11
- - 0 0 1 1 0 0 1 1 0x33
- 0 0 0 1 0 0 0 1 0 0x22
- + 0 1 1 0 0 1 1 0 0x66
0 + 0 1 0 0 0 1 0 0 0x44
+ + 1 1 0 0 1 1 0 0 0xCC
+ 0 1 0 0 0 1 0 0 0 0x88
+ - 1 0 0 1 1 0 0 1 0x99

α

ω

n

A cce le ra ting D ece le ra tingC ons tan t-V e loc ity

Figure 4. Linear Velocity Profile

Tn tn 1+ tn–=

ω αtn=

AN155

Rev. 1.0 7

Equation 3

Solving Equation 3 for time gives the results shown in
Equation 4. This is the absolute time required to provide
a linear acceleration profile. This would be useful if we
were working in absolute time and scheduling each
commutation point based on a cumulative count from
the beginning. However, we would like to use a relative
count for each step period.

Equation 4

The definition of the step period from Equation 1 is used
with the results in Equation 4 to provide an equation for
the step period listed in Equation 5. The constant
acceleration term has been factored out and is called T0
as defined in Equation 6. The value of T0 will determine
the step period of the initial step with n equal to zero.
Thus, we can use a single table for the relationship and
let T0 be a variable. This means one table can be used
with any stepper motor.

Equation 5

Equation 6

Common Mistakes
As demonstrated in the preceding section, the linear
velocity profile is not as simple as it would first appear.
The values stored in the linear velocity table must
closely follow the non-linear equation shown in
Equation 5. Often engineers in a hurry to get hardware
up and running do not use the proper relation for the
stepper motor table. This is a very common mistake that
is very easy to make.
The most common mistake is to have the step period
decrease linearly with the step number. For example,
one might have an initial step period of 256 timer ticks
and decrease the step period by one each time. This
results in a non-linear velocity that is increasing
hyperbolically as the step period approaches zero. Such
a profile will hardly move at first and then the velocity
will increase much too quickly.
The second most common mistake is to have the step
period decrease with the inverse of the step number.
This results in a velocity that is linear with respect to the
step number. But this ignores the fact that the step
period is constantly changing. The velocity should be
plotted against the cumulative time, not the step
number. If the velocity is plotted against the absolute
time, the resulting curve is a second order function. That
is, the velocity is increasing with the square of time. This
profile also starts out too slow and ends up accelerating
too fast.

Linear-Velocity vs. Linear-Acceleration
Many engineers hold a preconceived notion that a forth-
order linear-acceleration profile will provide much better
dynamic performance than a linear velocity profile. A
linear-acceleration order profile has an acceleration that
is trapezoidal in nature and velocity shaped in an s-
curve.
A linear-acceleration profiler provides only marginally
better dynamic performance in some systems. Only a
few applications can actually benefit from a forth-order
profile. For example, a printer head driven by an elastic
band might benefit from the improved smoothness. The
linear-acceleration profiler will have a smoother
transition between the acceleration and slewing phases.
The maximum step rate is dictated by motor parameters
and will be the same in either case.
The linear velocity profile has several advantages over
the forth-order profile: The linear velocity profile can be
implemented using a single table. The step table is
fixed. It can use a single multiply function to provide a
variable acceleration. Using the table avoids having to
calculate complex functions like a square root.
Calculating the profile is very simple.

n 1
2
---αtn

2=

tn
2n
α
-------=

Tn tn 1+ tn– T0 n 1+ n–()= =

T0
2
α
---=

AN155

8 Rev. 1.0

In contrast the linear-acceleration profile is much more
complex. A single fixed table cannot be used. The initial
conditions of each acceleration phase depend on the
length of all prior phases.
The recommended solution is to always start out using
a properly implemented linear-velocity profiler. This will
be the best solution for most applications. Verify that the
velocity is actually linear and evaluate the dynamic
response of the system. If the dynamic response of the
system does not meet the requirements, consider using
a linear-acceleration profile.

Interrupt Based Algorithm
When developing an algorithm to control a stepper
motor using a small microcontroller, it is important to
consider the manner in which the code will be executed.
A simple sequential algorithm could accomplish the
task. The sequential algorithm might calculate the
current step time and figure out what to do next
depending on the acceleration phase. However, such
an algorithm would end up writing to the timer and then
waiting until the timer times out. It would spend most of
the time just waiting on the timer.
Fortunately most MCU timers are capable of generating
interrupts. Thus, we can set up the timer to generate an
interrupt after one step period. When the interrupt
occurs, the MCU should commutate the motor and
update the timer with the next step period.
Now considering that we want to make the stepper
motor control interrupt based, we must use a different
paradigm. The timer interrupt service routine should be
small, fast, robust, and only do what must be done on
each commutation period. Anything that can be
calculated once beforehand will be done outside the
interrupt service routine. Values may be stored in global
variables to be accessed by the interrupt service
routine.
Using this scheme there are two basic pieces of code.
The first is the profiler or the move() function. The
second is the timer interrupt service routine. The profiler
is called from the main loop and is executed in the
foreground. The profiler calculates the global variables
based on the target location and the current position of
the motor. The function is named move() so that the
user code makes sense in plain English.
This reference design uses a simple divide-by-four
profiler. This means that the total number of steps is
divided by four. The motor will accelerate and
decelerate for one forth of the total number of steps.
The remainder of the steps will be at a constant velocity.
Some actual profiles are shown in Figure 5. Note that

the total time accelerating for short profiles is much
more that one-forth the total time. This is due to the
effect of the variable step period.

The constant-acceleration and deceleration phases are
accomplished by incrementing and decrementing an
index for the stepper motor table. Incrementing the table
index by one each step will accelerate the motor.
Decrementing the index each step will decelerate the
motor. The maximum index and the corresponding
minimum period determine the top speed of the motor
for a particular profile.

Hardware Design
The Stepper motor reference design hardware consists
of four sections: the C8051F300 microcontroller, the
power electronics, the voltage regulator, and the serial
interface. The full schematic is included in Appendix A.
The Bill of Materials is in Appendix B and the printed
circuit board artwork is in Appendix C.

Microcontroller
The reference design features the C8051F300
microcontroller. This microcontroller is housed in a tiny
3 mm by 3 mm 11-lead micro lead package (MLP). This
package is small enough to be integrated into the
smallest motor. The C8051F30x family includes five
devices with various options. The ‘F300 and ‘F301
include a calibrated internal oscillator. The internal
oscillator is calibrated to within ±2% at test. This is
close enough to use the internal oscillator for the UART
with baud rates up to 115.2 kbps. The reference design
does not utilize 8-bit 500 ksps ADC in the ‘F300. Thus,
the design could use either the ‘F300 or the ‘F301 which
does not include the ADC. The ADC on the F300 might
prove useful in some designs for monitoring the dc
motor voltage, stepper motor current, or the stepper
motor temperature.
The unipolar stepper motor drive requires four outputs
to drive the transistors. P0.0 through pin P0.3 are used
to drive the power MOSFETs. The pins have been

ω

τ

ω

time

Figure 5. Different Profiles

AN155

Rev. 1.0 9

swapped during the layout phase for optimum routing to
the MOSFET gates. The stepping pattern has been
changed accordingly. The port output current is
sufficient to drive most small power MOSFETs with sub-
microsecond switching times.
The I/O pins of the MCU are by default configured as
inputs with a weak pull-up transistor. This has the
inadvertent effect of turning on all four transistors
momentarily when the MCU is first powered up. This is
usually not a problem for unipolar stepper motors since
the current will be limited by the winding resistance of
the motor. Bipolar drive will require either pull-down
resistors or inverting gate drivers to accommodate the
default pull-ups.
P0.6 is used to drive an LED indicator that illuminates
while the motor is moving. The C2 data signal is pin
shared with the active-low switch “SW1” on pin 10. The
switch is used to initiate a pre-programmed move so
that the board can be used without the serial interface
when desired.
The C2 reset signal is pin shared with a manual reset
button on pin 8. Momentarily pressing the reset button
will reset the MCU and turn all of the output transistors
off. Note that the MCU will be held in reset for as long as
the reset button is held down. As a result, all four output
transistors will be turned on while the reset button is
depressed.

Power Electronics
The power MOSFET selected for the stepper motor
reference design is the Fairchild FDS8926A. These are
small low on-resistance power MOSFETs in an SO8
package. These MOSFETs were chosen for their 30 V
rating, 3 V gate, and SO8 package. A maximum drain to
source rating of 30 V is required to drive the 12 V
stepper motor. The MOSFET chosen should be
compatible with a 3 V MCU. The relevant on-resistance
rating of the FDS8926A is 38 mΩ at 2.5 V. These
MOSFETs should easily handle 2-3 A in this application.
As a practical matter, the large dc wall-mounted
transformer used with the reference design has a rating
of 1 A at 9 V. The open load voltage of this supply is
about 12 V. The output voltage decreases to 9 V at 1 A.
This is sufficient to drive a small Nema 17 stepper motor
with a voltage rating of 12 V or 9.6 V and a resistance of
30 Ω or greater. A regulated lab supply can be used to
drive larger stepper motors up to 3 A.
The 330 Ω resistors were chose to provide turn-off time
of just under 1 µs. During the drain to source rise time,
the gate to source voltage is about 1.5 V. This is called
the plateau voltage and will depend on the threshold
and transconductance of the chosen MOSFET. The

plateau voltage may be obtained from the gate charge
curve as shown in Figure 6. Neglecting the VOL of the
MCU, there is about 1.5 V across the gate drive resistor.
The 330 Ω resistors provide about 5 mA of gate drive
current during turn off. The gate to drain gate charge
Qgd of this MOSFET is about 5 nC. This gives a
switching time of about 1 µs. The measured values are
very close to this value. The measured VOL of the MCU
is about 100 mV at this current.

It is not advisable to turn off the MOSFETs too fast. Using
no resistor or too small of a resistor will result in much
faster turn-off. The turn-off time will determine the rate of
the change in current or di/dt. The overshoot voltage at
turn-off depends on the unclamped inductance and the
di/dt. Excessive overshoot voltage could damage the
power MOSFETs. An excessively fast turn-off may also
hinder the ability of the Zener clamp to effectively protect
the Power MOSFET. The resistor also protects the MCU
from excessive currents and voltage transients.
The stepper motor reference design uses a clamp
circuit to protect the power MOSFETS from excessive
overshoot voltage. A zener voltage of 27 V was chosen
to protect the 30 V MOSFETs. This clamp circuit is a
cautionary measure to protect the MOSFETs when used
with different motors and voltage supplies. In many fixed
applications it is possible to just let the MOSFETs
avalanche during turn-off. The MOSFETs must be
capable of handling the peak current and energy stored
in the unclamped inductance. The current and motor
inductance will vary greatly from motor to motor. The
clamp circuit is useful when a single drive board might
be used with various motors.

Voltage Regulator
The voltage regulator is an LM2973-3.3. This is a 3.3 V
low-dropout regulator in a SOT223 package. The
maximum continuous input voltage for this device is 26 V.
It is important to consider the maximum open circuit
voltage of the power supply when selecting a voltage

Qg, Gate Charge (nC)

V
G

S
, G

at
e-

S
ou

rc
e

V
ot

ag
e

(V
)

5 10 15 20 25

1

2

3

4

5

Vplateau = 1.5 V

Figure 6. MOSFET Gate Charge

AN155

10 Rev. 1.0

regulator. The total worst-case VDD current draw for the
board is about 25 mA. This condition occurs when both
LEDS are on and the serial port is running at 115.2 kbps.
This results in a worst-case power dissipation in the
regulator of about 300 mW with the input voltage at 15 V.
The large tab of the SOT223 is connected to a large
ground plane to improve heatsinking.

Serial Port
The serial port transceiver is a Sipex SP3223U. This is
a 3.3 V RS232 transceiver. The TX and RX pins of the
transceiver are connected to P0.4 and P0.5 of the
C8051F300. Test points are provided for the TX and RX
connections. The extra transceiver channel is used to
loop RTS back to CTS. This ensures that the terminal
will work when hardware handshaking is enabled.

PC Board Layout
The two-layer printed circuit board layout is divided into
two routing areas with logic circuits on the left and power
circuits on the right. The logic circuitry uses a ground
plane top and bottom. The minimum clearance from pad
to pad for the C8051F300 MLP11 footprint is about 8
mils. The actual PC board layout uses 10 mil traces and
a 10 mil ground plane clearance. The design rule
checker also uses a 10 mil clearance. Only the pads of
the MLP package have less than 10 mils clearance.
Most PC board fabrication companies can readily
manufacture boards with 8 mil clearances; including
most quick-turn PCB companies. But this does limit the
copper weight to 0.5 oz. raw stock with a finished plated
weight of 1 oz.
Using a finished copper weight of 1 oz., the high current
conductors must be very wide. A copper width of
100 mils (2.5 mm) will give a temperature rise of 10 °C
at 5 A. It is not practical to use conductors this wide with
the small SO8 package, so copper pour regions were
used for the motor current conductors. The part
placement is optimized to provide large copper pour
areas for the ground, 12 V supply, clamp, and motor
outputs. This has the benefit of using all available
copper for current conduction and heatsinking. The
inductance for the clamp circuit is also minimized by
using a large ground plane area on the top and a large
12 V plane on the bottom.
The PC board uses a single point grounding scheme
with separate grounds for the digital and power
sections. The grounds are connected together using a
ground test point footprint. This is a contrived
mechanism to permit the integrated PC board software
to manage the grounds separately and ensure there are
no ground loops. A single design rule error may be
generated for the ground test point.

Software Design
Port Configuration
The C8051F300 family of products has a very useful
feature call the Digital Crossbar. Using the Digital
Crossbar, the end user can select which of the many
peripherals can access the port pins.
In the stepper motor reference design P0.0 through
P0.3 are used to drive the stepper motor. The
corresponding bits are set in the XBR0 register causing
the Crossbar to skip these pins. This means that P0.0
through P0.3 are not available as digital I/O for any of
the internal peripherals. Bits 0 through 3 are also set in
the P0MDOUT register. This configures the pins as
push-pull outputs so that they can drive the power
MOSFETs both high and low.
The stepper motor I/O pins can be controlled by either
setting the bits P0.0 to P0.3 one at a time or by writing a
byte to the P0 register. We would like the pins to change
state simultaneously, so we will write a byte to the P0
register. Caution must be exercised when writing to the
P0 register as this affects all of the port pins. Any pins
configured as push-pull outputs will be driven high or
low. Pins that are used as inputs may also be used as
open drain outputs. So if we wish these pins to remain
inputs, we must set the corresponding bits to 1 when
writing to P0.
Port pins P0.4 and P0.5 are allocated to the UART by
setting Bit 0 and Bit 1 in the XBR1 register. This puts the
UART in control of these pins. Writing to P0 will have no
effect on pins P0.4 and P0.5. Unlike other peripherals
that are assigned based on priority, the UART pins are
always assigned to P0.4 and P0.5 when enabled. When
using the UART, the corresponding pin skip bits in XBR0
should not be set. Also Bit 4 of P0MDOUT is set to
configure the TX pin as a push-pull output.
The two remaining pins of P0 are used for a status LED
and a control push-button switch. P0.6 was selected for
the LED. The corresponding Bit 6 is set in XBR0 to skip
P0.6. Bit 6 in P0MDOUT is also set to configure the port
pin as a push-pull output. This is not absolutely
necessary since the LED is only driven when low.
P0.7 is used as the push-button switch input. No special
action is required to configure this pin as an input.
However, one must be careful not to allocate pins to any
other peripherals. Since P0.0 through P0.6 have
already been allocated, P0.7 is next on the allocation
chain. There is no pin skip bit for P0.7. For example,
enabling the SYSCLK output would force the SYSCLK
on P0.7. So for P0.7 to be reserved as an input, bits 4
through 7 of XBR1 must be zero.

AN155

Rev. 1.0 11

User Interface
The primary user interface is an ASCII terminal with a
baud rate of 57,600 bps. The main loop of the code
parses the characters from the terminal and performs
the appropriate action. The flowchart for the main loop
is shown in Figure D1.
The main loop first checks to see if the motor is moving.
The LED bit is used to turn on the LED and is also used
as a state variable. The LED is turned on by the move
function and is turned off by the Timer ISR on
completion of the move. While the motor is moving the
main loop will periodically update the position to the
terminal display. This is accomplished by overwriting the
previous position. The position is written to the terminal
followed by a carriage return without the normal line
feed character. This overwrites the previous number.
The position is written to the terminal using the puts()
put string function. A string of four space characters are
used to blank trailing characters. This is necessary
when moving from a large 5-digit number to a small 1-
digit number. A short delay is used to prevent the
transmitter buffer from overflowing.
Next the main loop checks the doneFlag. The Timer
ISR sets the doneFlag when the move is complete. If
doneFlag is set, the main loop will call the doneMsg()
function. The doneMsg() function displays the word
“done” and readies the terminal for the next command.
The doneFlag is cleared by doneMsg().
Next the main loop enters the command parser. The
command parser is implemented using a large switch
statement. The parser gets one character from the
terminal and uses a case statement to do different
things depending on the character.
If the character is a carriage return, a newline and
prompt will be transmitted to the terminal. Repeatedly
entering a carriage return will display multiple prompt
characters, each on a new line.
If the character is a p, the parser will get a 16-bit
number from the terminal using the getuint()
function, and move to the new position.
If the character is an a, the parser will get an 8-bit
number from the terminal using the getuchar()
function, store the new value, and display the new value
to the screen for confirmation.
If the character is an s, the main loop will display the
current status information - position and acceleration.
The status command does not wait for any additional
characters.
If the parser does not recognize the character, an invalid
character message will be displayed.

Move Function
A flowchart for the move function is shown in Figure D2.
The move function first checks to see if the motor is
already at the target position. If the motor is already at
position zero and you enter the command p0, the motor
will not move and the done message will be displayed.
This is necessary to ensure that the algorithm works
properly. The smallest valid move is 1 step in either
direction. The current position is the value stored in the
global variable Position. The desired position,
passed as a parameter to the move() function, is called
targetPosition. The forward flag is set or cleared
depending on whether the target is greater than the
position. Both targetPosition and Position are
unsigned integers. The smaller is subtracted from the
larger to get the variable length.
The global variable TableMax defines how many steps
the motor will accelerate and decelerate. While
accelerating the TableIndex will be incremented until
it reaches TableMax. If length is less than 1024, the
value for TableMax is calculated by dividing length
by four. If length is greater than 1024, TableMax is
set to 255. This is the maximum allowable value for
TableIndex.
Taking length, subtracting two times TableMax for
the acceleration/deceleration steps, and subtracting one
more for the initial step gives the number of constant
velocity slewing steps. This ensures that the total
number of steps is exactly equal to the length.
The move function then schedules the timer to execute
the first step after a short delay. After the initial step, the
Timer Interrupt service routine Timer_ISR() will
control the stepper motor timing from then on.

Timer ISR
The timer interrupt service routine moves the motor
according to the prescribed profile. The interrupt service
routine will first commutate the motor. Then the
PatternIndex is incremented or decremented
according to the stepper motor direction. The
PatternIndex is used as a pointer to the step pattern.
It is not to be confused with the TableIndex that points
to the linear velocity table. The step pattern index for a
unipolar stepper motor is a modulus 8 counter. It counts
from zero to seven. The step pattern is written to P0. Bit
7 is set to a 1 to ensure that P0.7 remains configured as
an input.
The timer interrupt service routine determines what to
do next depending on the current state of the motor. The
four possible states are Accelerating, Decelerating,
Slewing, or Done. If the motor state is Done, the timer
ISR will disable further timer interrupts, turn off the LED,

AN155

12 Rev. 1.0

and set the doneFlag. The doneFlag is used as a
handshaking mechanism for the main loop to display
the done message.
If the motor state is not Done, the timer ISR will
calculate the value for the next interrupt and write to the
TL0 and TH0 special function registers. Next the
TableIndex or SlewCount is modified according to
the motor State. During Acceleration, the TableIndex
is incremented. During Deceleration the TableIndex is
decremented. If the motor state is Slewing the
SlewCount will be decremented.

UART Functions
The UART functions implement fully buffered I/O using
the C8051 receiver and transmitter. The benefit of using
buffered I/O is that most short messages will be sent or
received in a non-blocking manner. This means that the
CPU does not have to wait for each byte to be
transmitter or received. The user code does not write or
read data directly to the serial port. Instead the user
functions write or read data to the buffers. A UART
interrupt service routine transmits characters from the
write buffer and places received characters into the read
buffer.
The UART functions are modeled after the ANSI stdio
library functions. Each function has been optimized for
use in a small microcontroller. This is more code
efficient than including the entire stdio library and
rewriting the bottom layer functions.
The put string puts() function is used to display
messages on the terminal. There are two versions of
the get integer & put integer functions, one for 8-bit
unsigned char data and one for 16-bit unsigned int data.
The middle layers of the serial protocol are the put
character putc() and get character getc() functions.
These are the lowest level functions that should be
called by the user code.
The bottom layers of the serial communications protocol
are the write character writec() and read character
readc() functions. These functions write and read
directly to the read and write buffers. These functions
are called from the getc() and putc() functions. The
user code should not use readc() and writec()
functions directly. The readc() and writec()
functions momentarily disable UART interrupts while
accessing the read and write buffers to avoid
contentions. The writec() function also restarts the
transmitter if it is idle.
A single UART Interrupt service routine UART_ISR is
used for both transmit and receive interrupts. The ISR
must check both the transmitter and receiver to
determine which needs servicing. If the write buffer is

empty, the UART_ISR will set the TX_Idle flag bit and
clear the transmit interrupt flag without writing to SBUF0.
This will disable the transmitter until restarted. The
TX_Idle flag bit is used for handshaking with the
writec() function. The writec() function checks the
status of the TX_Idle flag bit and restarts the
transmitter if necessary.

References
1. Takashi Kenjo, “Stepping motors and their Microprocessor

Controls”, Oxford University Press, 1984.
2. Ken Berringer, “Linear Velocity Control of Stepper Motors”,

Incremental Motion Systems Symposium, June 1999

AN155

Rev. 1.0 13

APPENDIX A - SCHEMATIC

AN155

14 Rev. 1.0

APPENDIX B - BILL OF MATERIALS

Qty Designator Description Value pkg mfr PN Manufacturer

1 C1 electrolytic capacitor 470 u EEU-
FC1E471

Panasonic

2 C2, C11 chip capacitor 1. 0u 1206

10 C3-10, C12, C13 chip capacitor 0.1 u 805

4 R1, R2, R3, R4 chip resistor 330 805

1 R10 chip resistor 10 k 805

3 R5, R6, R9 chip resistor 1 k 805

2 R7, R8 chip resistor 470 805

4 D1, D2, D3, D4 Schottkey diode 30 V SMB 10BQ30 International
Rectifier

1 D5 Zener Diode 27 V SMA SMAZ27-13 Diodes Inc

2 D6, D7 LED

1 U1 Microcontroller MLP11 C8051F301 Silicon
Laboratories

1 U2 RS232 Transceiver TSSOP
20

SP3223E Sipex

1 U3 3.3V Regulator SOT223 LM2937 National

2 U4, U5 Power MOSFET SO8 FDS8926A Fairchild

2 SW1, SW2 Switch EVQ-PAD04M Panasonic

1 P1 Power Connector RAPC722 Switchcraft

1 J1 Shrouded Header 2510-6002UB 3M

1 J2 Terminal Block 1729160 Phoenix
Contact

1 J3 DB9 Connector 745781 Amp

1 T1 unregulated 9VDC
Wall Transformer

830AS09100 Tamura

AN155

Rev. 1.0 15

APPENDIX C - PCB ARTWORK

Figure C1. Silk Layer

Figure C2. Top Layer

AN155

16 Rev. 1.0

r

Figure C3. Bottom Laye

Figure C4. Top Solder Mask

AN155

Rev. 1.0 17

Figure C5. Bottom Solder Mask

AN155

18 Rev. 1.0

APPENDIX D - CODE FLOWCHARTS

Figure D1. Main Loop

main

Init SYSCLK.
Init Port.

Init Timer.
Init UART.
Init motor
variables.

Enable Interrupts.

moving? update position.
display value.

get character from
buffer.

case '\r' ?

case 'p' ?

case 'a'?

case 's'?

display prompt.

get number.
(unsigned char)

get number.
(unsigned int) display position.

display
accelleration.

display status info.

invalid character.

Y

Y

Y

Y

N

delay.

move to new
position.

doneFlag = 1? display doneMsg.
clear doneFlag.

Y

N

Y

N

AN155

Rev. 1.0 19

Figure D2. Move (Profiler)

move

target =
position?

target >
position?

set forward flag.
calculate length.

clear forward flag.
calculate length.

length<1024?

maxTableIndex =
255.

maxTableIndex =
length/4.

calculate number of slew steps.
clear table index.

turn on LED.
schedule timer to start after short delay.

enable timer.

display done.

end

Y

N

N

Y

N

Y

AN155

20 Rev. 1.0

Figure D3. Timer ISR

Timer_ISR

forward ?

increment StepIndex.
increment position.

done ?

get value from table.
multiply by Tzero.

write value to timer.

decrement StepIndex.
decrement position.

decrement
slewCount.

Return from
Interrupt

Y

Y

N

get StepPattern using index.
write pattern to P0.

evaluate motor state.

accelerate?

else
decelerate?

decrement
TableIndex.

increment
TableIndex.

set ET0

clear ET0.
stop T0.

turn-off LED.
set doneFlag.

Y

Yelse
slewing?

Y

N

N

N

N

AN155

Rev. 1.0 21

Figure D4. UART ISR

UART_ISR

receiver
interrupt flag

set?

receive buffer
full?

clear receiver flag.
read SBUF sfr.

put into readBuffer.
Increment readIndex.

Increment ReadCount.

transmitter
interrupt flag

set?

transmit buffer
empty?

clear transmitter flag.
get last char in WriteBuffer.

write to SBUF sfr.
decrement WriteCount.

drop character.
(dummy read)

Set TX_Idle flag

Return from
Interrupt.

Y

Y

Y

Y

N

N

N

N

AN155

22 Rev. 1.0

APPENDIX E - CODE LISTING
//---
// Stepper.c
//---
// Copyright 2003 Silicon Laboroatories Inc.
//---
// Includes
//---
#include <c8051f300.h> // include SFR declarations
//---
// defines and typedefs
//---
#define SYSCLK 24500000 // SYSCLK frequency in Hz
#define BAUDRATE 57600 // Baud rate of UART in bps

#define READ_BUFFER_SIZE 16 // change UART receive buffer size here
#define WRITE_BUFFER_SIZE 16 // change UART receive buffer size here

#define ON 0 // LED is active low
#define OFF 1
#define ACCELERATE 3 // motor states
#define SLEWING 2
#define DECELERATE 1
#define DONE 0
#define INIT_TZERO 80 // Tzero used at start-up and with
 // manual mode, change value here for
 // different stepper motors

typedef union // union used for writing to TL0 & TH0
 {
 struct
 {
 unsigned char hi;
 unsigned char lo;
 } b;
 unsigned int w;
 }udblbyte;

//---
// Global CONSTANTS
//---
//
// half step stepper motor step pattern
// transistors are in order B-,B+,A-,A+
//
// 0x01 = 0001
// 0x05 = 0101
// 0x04 = 0100
// 0x06 = 0110
// 0x02 = 0010
// 0x0A = 1010
// 0x08 = 1000
// 0x09 = 1001

const unsigned char code StepPattern[8]=
 {0x01,0x05,0x04,0x06,0x02,0x0A,0x08,0x09};
//

AN155

Rev. 1.0 23

// stepper motor linear velocity profile
// 255 * [sqrt(n+1)-sqrt(n)]
// n = 0 to 255
//
const unsigned char code StepTable[256]=
{
 0xFF, 0x69, 0x51, 0x44, 0x3C, 0x36, 0x32, 0x2E,
 0x2B, 0x29, 0x27, 0x25, 0x24, 0x22, 0x21, 0x20,
 0x1F, 0x1E, 0x1D, 0x1C, 0x1C, 0x1B, 0x1A, 0x1A,
 0x19, 0x19, 0x18, 0x18, 0x17, 0x17, 0x17, 0x16,
 0x16, 0x16, 0x15, 0x15, 0x15, 0x14, 0x14, 0x14,
 0x14, 0x13, 0x13, 0x13, 0x13, 0x12, 0x12, 0x12,
 0x12, 0x12, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,
 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F,
 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0E, 0x0E,
 0x0E, 0x0E, 0x0E, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D,
 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D, 0x0D,
 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C,
 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C,
 0x0C, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B,
 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B,
 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x0A, 0x0A,
 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A,
 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A,
 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A,
 0x0A, 0x0A, 0x0A, 0x09, 0x09, 0x09, 0x09, 0x09,
 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
 0x09, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08,
 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x07, 0x07
};
//---
// Function PROTOTYPES
//---
//
// main and user interface functions
void SYSCLK_Init (void); // initialize port pins and crossbar
void PORT_Init (void); // initialize system clock and watchdog
void Timer_Init (void); // initialize timer for Motor and UART
void UART_Init (void); // initialize UART
void Motor_Init(void); // initialize Motor variables
void doneMsg(void); // display done message
void error(void); // display error message
void delay (void); // delay used for position updating
void INT0_ISR (void); // external interrupt used for SW2
//
// stepper motor control functions
void move (unsigned int);
void Timer_ISR (void);
unsigned int MUL8x8(unsigned char, unsigned char);

AN155

24 Rev. 1.0

//
// BUFFERED UART FUNCTION PROTOTYPES
//--Top Level - User Functions --

// put a string into transmit buffer, used to display text messages
void puts (char *);

// converts a 16 bit number to a string of ASCII characters
// and stores the characaters into the transmit buffer
void putuint(unsigned int);

// converts an 8 bit number to a string of ASCII characters
// and stores the characaters into the transmit buffer
void putuchar(unsigned char);

// retrieves ASCII characters from the receiver buffer
// and converts a string of digits into an 8-bit number
unsigned char getuchar(void);

// retrieves ASCII characters from the receiver buffer
// and converts a string of digits into an 16bit number
unsigned int getuint(void);

void newline(void); // outputs carriage return & line feed

//----------Middle Level - Primitive User Functions ---------------------------

// retrieves one character from the receive buffer using readc and echoes
// the character to the transmit buffer
char getc (void);

// stores one character into the transmit buffer using writec
void putc (char);

void readClear(void); // clears read buffer

void writeClear(void); // clears write buffer

//----------------Lowest level - Hardware access functions --------------------
char readc (void); // pulls one character directly
 // from the receive buffer

void writec (char); // writes one character directly
 // to the transmit buffer

//---
// Global VARIABLES
//---
//
// user interface variables
sbit LED = P0 ^ 6; // bit set high to turn LED on
//
// Stepper Motor Variables
unsigned int Position; // current motor position
unsigned char TableIndex; // index for stepper motor table
unsigned char MaxTableIndex; // maximum index for desired profile
unsigned int SlewCount; // down counter for slewing phase

AN155

Rev. 1.0 25

unsigned char Tzero; // initial period, sqrt(2/alpha)
unsigned char PatternIndex; // index for step pattern, modulus 8 counter
bit Forward; // 1 for forward, 0 for reverse
bit doneFlag; // done flag used for Timer ISR handshake
unsigned char motorState; // motor state variable
//
// UART Global Variables

// UART receiver buffer
char idata readBuffer[READ_BUFFER_SIZE];
// UART transmitter buffer
char idata writeBuffer[WRITE_BUFFER_SIZE];
unsigned char writeIndex; // points to next free write byte
unsigned char readIndex; // points to next free read byte
unsigned char writeCount; // number of bytes in write buffer
unsigned char readCount; // number of bytes in read buffer
bit TX_Idle; // flag set when TX buffer is empty

//---
// MAIN Routine
//---
//
// The main function initializes everything and then services the user
// interface. The user interface parses characters from the UART and
// executes basic commands. There are three interrupt service routines
// which function in the background - The Timer_ISR which controls the
// stepper motor; The UART_ISR which moves characters to/from the buffers;
// and the INT0_ISR that handles the pushbutton switch commands.
//
void main (void)
{
 char theChar; // the character to be parsed
 unsigned int newP; // new position to move to

 SYSCLK_Init (); // Init system clock to 24.5MHz
 PORT_Init (); // Init crossbar and GPIO
 Timer_Init(); // Init T0 for stepper motor and
 // T1 for Baud rate
 UART_Init(); // Init UART
 Motor_Init(); // Init motor global variables
 EA = 1; // enable global interrupts

 putc('>'); // display prompt

 while(1) // main loop
 {
 if(LED==ON) // display position while moving
 {
 putuint(Position); // display position
 puts(" "); // blank out trailing characters
 putc('\r'); // overwrite line by not using linefeed
 delay(); // delay sets display update rate
 }
 else
 {
 if(doneFlag)
 {
 doneMsg(); // if done display message
 }

AN155

26 Rev. 1.0

 theChar = getc(); // get character to be parsed
 switch(theChar) // parse character
 {
 case '\r': // if return character
 putc('\n'); // linefeed with no carriage return
 putc('>'); // display prompt
 break;
 case 'p': // p for new position
 newP = getuint(); // get number as unsigned integer
 newline();
 puts("Moving..."); // display moving status indicator
 newline();
 puts("Position:"); // display position tag
 newline();
 move(newP); // initiate move to new position
 break;
 case 'a': // a for change acceleration
 Tzero = getuchar(); // get number as unsigned character
 newline();
 puts("Acceleration:"); // confirm acceleration changed
 newline();
 putuint(Tzero); // display new acceleration
 newline();
 putc('>');
 break;
 case 's': // s for display status
 newline();
 puts("Position:"); // display position tag
 newline();
 putuint(Position); // display position value
 newline();
 puts("Acceleration:"); // display acceleration tag
 newline();
 putuint(Tzero); // display acceleration value
 newline();
 putc('>'); // display prompt
 break;
 default:
 error(); // display error message
 }
 }
 }
}

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use the internal 24.5MHz
// oscillator as its clock source. Also enables missing clock detector reset.
//
void SYSCLK_Init (void)
{
 OSCICN = 0x07; // set SYSCLK to OSC frequency
 RSTSRC = 0x04; // enable missing clock detector
 PCA0MD &= ~0x40; // disable watchdog timer
}

//---

AN155

Rev. 1.0 27

// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports.
// P0.0 - A+
// P0.1 - A-
// P0.2 - B+
// P0.3 - B-
// P0.4 - Txd
// P0.5 - Rxd
// P0.6 - LED
// P0.7 - C2D/Switch
//
void PORT_Init (void)
{
 XBR0 = 0x4F; // Crossbar Register 1
 XBR1 = 0x03; // Crossbar Register 2
 XBR2 = 0x40; // Crossbar Register 3
 P0 = 0xC0; // Turn off MOSFETs, Set P0.6 & P0.7
 P0MDOUT = 0x5F; // Output configuration for P0
 P0MDIN = 0xFF; // Input configuration for P0
 IP = 0x02; // T0 high priority, others low
 IT01CF = 0x70; // use P0.7 for INT1
 IT1 = 1; // edge sensitive interrupt
 IE1 = 0; // clear external interrupt
 EX1 = 1; // enable external interrupt 1
}
//---
void Timer_Init (void)
{
 CKCON = 0x12; // T1 uses sysclk, T0 uses /48,
 TMOD = 0x21; // T1 mode 2, T0 mode 1
}
//---
void UART_Init(void)
{
 SCON0 = 0x10; // mode 1, 8-bit UART, disable receiver
 TH1 = 0x2C; // set Timer1 reload value for 57600
 TR1 = 1; // start Timer1
 TX_Idle = 1; // set idle flag
 readClear(); // zero out read buffer
 writeClear(); // zero out write buffer
 ES0 = 1; // enable UART interrupt
}
//---
void Motor_Init()
{
 Tzero = INIT_TZERO; // initialize acceleration
 Position = 0x0000; // zero position
 LED = OFF; // turn off LED
 doneFlag = 0; // clear done flag
}

//---
void error (void) // used by main
{
 newline();
 puts("invalid character"); // display error message
 newline();

AN155

28 Rev. 1.0

 putc('>');
}
//---
void delay (void) // used by main
{
 unsigned char i,j;

 for(i=255;i>0;i--) // simple delay for display update
 {
 for(j=255;j>0;j--);
 }
}
//---
void doneMsg(void) // called from Timer_ISR
{
 putc('\r'); // overwrite final position
 putuint(Position); // display int as string
 newline();
 puts("done!"); // indicate move complete
 newline();
 putc('>'); // display prompt
 doneFlag=0;

}
//---
void INT0_ISR (void) interrupt 2 // external interrupt 0 used for switch
{
 if(LED==OFF) // ignore switch if moving
 {
 if(Position==0) // if home move to 100
 {
 move(1600);
 }
 else // if not home move to home
 {
 move(0);
 }
 }
}

//---
// move
// This function calculates the profile and initializes the stepper
// motor. Function will abort if the target equals the Position or if
// the motor is still moving. Forward is set to 1 if target>Position.
// the length is calculated as the absolute value of Position minus
// target. For short moves less than 1024, MaxTableIndex is length
// divided by 4. For long moves, MaxTableIndex is set to 255.
//
// slewCount = length - 2 * MaxTableIndex - 1
//
// The slewcount is calculated by subtracting MaxTableIndex twice and
// decrementing. The TableIndex is initialized to zero.
//
void move (unsigned int target)
{
 unsigned int length; // used to calculate length of move

 if (target != Position) // abort if already there

AN155

Rev. 1.0 29

 {
 if (target > Position)
 {
 Forward = 1; // set forward flag
 length = target - Position; // subtract smaller (position)
 }
 else
 {
 Forward = 0; // clear forward flag
 length = Position - target; // subtract smaller (target)
 }
 if (length < 1024) // if short move
 MaxTableIndex = length>>2; // divide length by 4
 else
 MaxTableIndex = 0xff; // else max is 255
 SlewCount = length; // build value in SlewCount
 SlewCount -= MaxTableIndex; // subtract MaxTableIndex twice
 SlewCount -= MaxTableIndex;
 SlewCount--; // Subtract one to account first step
 TableIndex = 0; // init table index
 motorState = ACCELERATE; // init motor state
 TL0 = -100; // move starts in 100 ticks
 TH0 = 0xFF; // extend sign
 LED = ON; // turn on LED
 ET0 = 1; // enable Timer0 interrupts
 TR0 = 1; // start Timer0
 }
 else
 {
 doneFlag=1; // if done display message
 }
}

//---
// Timer_ISR()
// This is the timer interrupt service routine for the stepper motor.
// First the PatternIndex and Position are incremented or decremented
// depending on the direction of the motor. Then the new pattern is
// output to the stepper motor. Nested if..else statements are used to
// determine the if the motor is in the acceleration, slewing, or
// deceleration phase. The TableIndex and SlewCount are modified
// accordingly. When the move is complete, further output compares and
// interrupts are disabled.
//
void Timer_ISR (void) interrupt 1
{
 unsigned char TableValue;
 unsigned int offset;
 udblbyte time;

 if (Forward) // if forward
 {
 PatternIndex++; // increment step pattern
 PatternIndex &= 0x07; // fix modulus 8 counter
 Position++; // increment Position
 }
 else
 {
 PatternIndex--; // decrement step pattern

AN155

30 Rev. 1.0

 PatternIndex &= 0x07; // fix modulus 8 counter
 Position--; // increment Position
 }
 // output step pattern, set bit 7 because it is an input
 P0 = StepPattern[PatternIndex] | 0x80;

 // determine motor state based on counter values
 if (SlewCount == 0)
 if (TableIndex == 0)
 motorState = DONE;
 else
 motorState = DECELERATE;
 else
 if (TableIndex < MaxTableIndex)
 motorState = ACCELERATE;
 else
 motorState = SLEWING;

 if (motorState == DONE)
 {
 ET0 = 0; // disable T0 interrupts
 TR0 = 0; // stop T0
 LED = OFF; // turn off LED
 doneFlag = 1; // display done message
 }
 else
 {
 // get value from table, multiply by T zero
 TableValue = StepTable[TableIndex];
 offset = MUL8x8(Tzero, TableValue);
 TR0 = 0; // stop Timer0
 time.b.lo = TL0; // read lo byte first
 time.b.hi = TH0; // read hi byte second
 time.w = time.w - offset; // calculate new time
 TL0 = time.b.lo; // write lo byte first
 TH0 = time.b.hi; // write hi byte second
 TR0 = 1; // start Timer0
 if (motorState == DECELERATE) // if decelerating
 TableIndex--; // decrement table index
 else if(motorState == ACCELERATE)// if accelerating
 TableIndex++; // increment table index
 else if (motorState == SLEWING) // if slewing
 SlewCount--; // decrement slewCount
 ET0 = 1; // enable Timer0 interrupts
 }
}

//---
unsigned int MUL8x8(unsigned char a, unsigned char b)
{
 unsigned int ab;
 ab = (unsigned int) a * b; // cast a to int to trick compiler
 return ab; // return int
}
//---
void puts(char *string) // puts a string into send buffer
{
 while(*string) // while not null character
 {

AN155

Rev. 1.0 31

 putc(*string); // put character at pointer in buffer
 string++; // increment pointer
 }
}
//---
unsigned int getuint(void) // get string and convert to int
{
 char theChar;
 unsigned int i;

 i=0; // build value in i
 theChar=getc(); // get next character
 while(theChar<'0' || theChar>'9') // while not 0-9
 theChar=getc();
 while(theChar>='0' && theChar<='9') // while 0-9
 {
 theChar -= '0'; // convert from ASCII
 i *= 10; // shift decimal point
 i += theChar; // add next digit
 theChar=getc();
 }
 return i; // return int value
}
//---
void putuint(unsigned int i)
{
 char string[7]; // string used to build output
 char *sp; // string pointer

 sp=string + 6; // build back to front
 *sp=0; // insert null character
 do
 {
 sp--; // predecrement pointer
 *sp=i%10 + 0x30; // take modulus add 30
 i/=10; // divide i by 10
 } while (i); // while i not zero
 // now output front to back
 while (*sp) // while not null character
 {
 putc(*sp); // put character in buffer
 sp++; // increment pointer
 }
}
//---
unsigned char getuchar () // same as getuint but returns uchar
{
 char theChar;
 unsigned char i;
 i=0; // build value in i
 theChar=getc(); // get next character
 while(theChar<'0' || theChar>'9') // while not 0-9
 theChar=getc();
 while(theChar>='0' && theChar<='9') // while 0-9
 {
 theChar -= '0'; // convert from ASCII
 i *= 10; // shift decimal point
 i += theChar; // add next digit
 theChar=getc();

AN155

32 Rev. 1.0

 }
 return i; // return uchar value
}
//---
void newline(void) // normally cr and lf are used together
{
 putc('\r'); // output carriage return
 putc('\n'); // output linefeed
}
//---
// getc
// Gets a character from the read buffer using readc().
// The getc() function also echos the incoming keystrokes to the display;
//
char getc(void)
{
 char theChar;
 theChar=readc(); // get character using readc
 writec(theChar); // echo characters to display
 return theChar;
}
//---
// putc
// This is a totally unnecessary layer of abstraction. It is only used to be
// consistent with the getc function which requires an additional layer of
// abstraction to handle character echo.
//
void putc(char theChar)
{
 writec(theChar);
}
//---
void readClear(void) // clears read buffer
{
 unsigned char i;
 readCount=0;
 readIndex=0;
 i = READ_BUFFER_SIZE;
 do
 {
 i--; // predecrement
 readBuffer[i]=0; // zero all data
 } while (i != 0);
}
//---
void writeClear(void) // clears write buffer
{
 unsigned char i;
 writeCount=0;
 writeIndex=0;
 i = WRITE_BUFFER_SIZE;
 do
 {
 i--; // predecrement
 writeBuffer[i]=0; // zero all data
 } while (i != 0);
}

//---

AN155

Rev. 1.0 33

// readc()
//
// The readc() function is the lowest level function which provides
// direct access to the read buffer. It reads one character from the
// read buffer.
//
// Note that readc will wait if the read buffer is empty. This is usually
// desired if the program is waiting for user input.
//
// readc is a driver function and is closely integrated with the ISR.
// UART interrupts are temporarily disabled while the buffer is updated,
// This prevents the ISR from modifying the buffer and counter values
// during processing. That would be bad.

char readc(void)
{
 char theChar; // the character to return
 signed char i; // signed value to build location
 while (readCount==0); // wait here if buffer empty [blocking]
 ES0 = 0; // disable UART interrupts
 i = readIndex - readCount; // back up by readcount
 if (i < 0) // fix value if out of range
 i+=READ_BUFFER_SIZE;
 theChar = readBuffer[i]; // get character from read buffer
 readCount--; // one less character in the buffer
 ES0 = 1; // enable UARt interrupt
 return theChar; // return the character
}
//---
//
// writec()
//
// The writec() function is the lowest level function which allows access
// to the write buffer. It writes one character to the write buffer.
//
// Note that writec will wait if the write buffer is full. This is usually
// desired to prevent the write buffer from overflowing.
//
// writec is a driver function and is closely integrated with the ISR.
// UART interrupts are temporarily disabled while the buffer is updated to
// prevent the ISR from modifying the buffer and counter values during
// processing. That would be bad.

void writec(char theChar)
{
 // wait here if full [blocking]
 while (writeCount >= WRITE_BUFFER_SIZE);
 ES0 = 0; // disable UART interrupts
 writeBuffer[writeIndex] = theChar; // put character in buffer at writeIndex
 writeIndex++; // increment index
 if (writeIndex >= WRITE_BUFFER_SIZE)// fix if out of range
 writeIndex = 0;
 writeCount++; // one more character in buffer
 if(TX_Idle) // if transmitter idle flag set
 {
 TI0 = 1; // force TX interrupt
 TX_Idle = 0; // idle no more
 }
 ES0 = 1; // enable UART interrupts

AN155

34 Rev. 1.0

}

//---
void uartISR(void) interrupt 4 // main UART interrupt service routine
{
 char dummy;
 signed char i;
 // Who done it?
 if(RI0 == 1) // Was it the receiver?
 {
 RI0 = 0; // yep, clear receiver flag
 // if not full
 if (readCount != READ_BUFFER_SIZE)
 {
 readBuffer[readIndex]= SBUF0; // read char from UART
 readIndex++; // increment index
 if (readIndex == READ_BUFFER_SIZE)
 readIndex = 0; // fix if out of range
 readCount++; // one more in the buffer
 }
 else
 {
 dummy = SBUF0; // drop characters dummy!
 }
 }
 if(TI0 == 1) // Was it the transmitter?
 {
 TI0 = 0; // yep, clear transmitter flag
 if (writeCount>0) // if not empty
 {
 i = writeIndex - writeCount; // calculate where to get it
 if (i < 0) // fix if out of range
 i+=WRITE_BUFFER_SIZE;
 SBUF0 = writeBuffer[i]; // write character to UART
 writeCount--; // one less in the buffer
 }
 else
 {
 TX_Idle = 1; // set idle flag when empty
 }
 }
}
//---

AN155

Rev. 1.0 35

Notes:

AN155

36 Rev. 1.0

Contact Information
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

