40V SILICON HIGH CURRENT LOW LEAKAGE SCHOTTKY DIODE

SUMMARY

Schottky Diode $V_R = 40V$; $I_F = 2.2A$; $I_R = 40 \mu A$

Cathode

DESCRIPTION

This compact SOT23-6 packaged Schottky diode offers users an excellent performance combination comprising high current operation, extremely low leakage and low forward voltage ensuring suitability for applications requiring efficient operation at higher temperatures (above 85°C) see Operational Efficiency chart on page 4.

Key benefits:

Performance capability equivalent to much larger packages

Improved circuit efficiency & power levels

PCB area savings

FEATURES

- Low Equivalent On Resistance
- Extremely Low Leakage (40µA @30V)
- High current capability (IF = 2.2A)
- Low V_F, Fast switching Schottky
- SOT23-6 Package
- ZLLS2000 complements low temperature equivalent ZHCS2000
- Package thermally rated to 150°C

APPLICATIONS

- DC DC Converters
- Strobes
- Mobile Phones
- Charging Circuits
- Motor control

ORDERING INFORMATION

	REEL (inches)		QUANTITY PER REEL
ZLLS1000TA	7	8mm embossed	3000 units
ZLLS1000TC	13	8mm embossed	10000 units

C C C C

Anode

DEVICE MARKING

L10

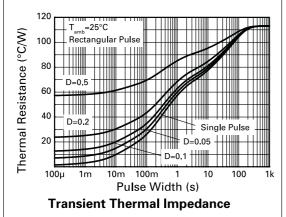
ISSUE 1 - JANUARY 2002

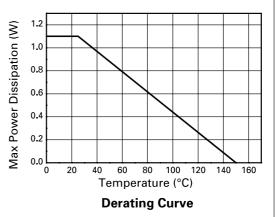
ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	VALUE	UNIT	
Schottky Diode		•	•	•
Continuous Reverse Voltage		V _R	40	V
Forward Current		I _F	2.2	A
Peak Repetitive Forward Current	I _{FPK}	3.55	A	
Rectangular Pulse Duty Cycle				
Non Repetitive Forward Current	t=≤100μs	I _{FSM}	36	А
	t=≤10ms		12	Α
Package		·	·	•
Power Dissipation at T _{amb} =25°C single die continuous		P _D	1.1	W
single die measured at t<5 secs			1.71	W
Storage Temperature Range		T _{stg}	-55 to +150	°C
Junction Temperature		Тј	150	°C

THERMAL RESISTANCE

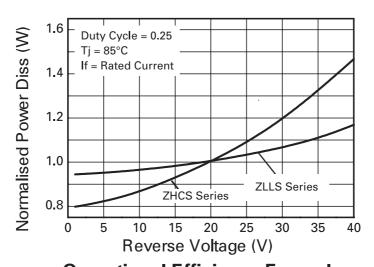
PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)	$R_{\Theta JA}$	113	°C/W
Junction to Ambient (b)	$R_{\Theta JA}$	73	°C/W


Notes


(a) For a device surface mounted on $25 \text{mm} \times 25 \text{mm}$ FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.

(b) For a device surface mounted on FR4 PCB measured at t<5secs.

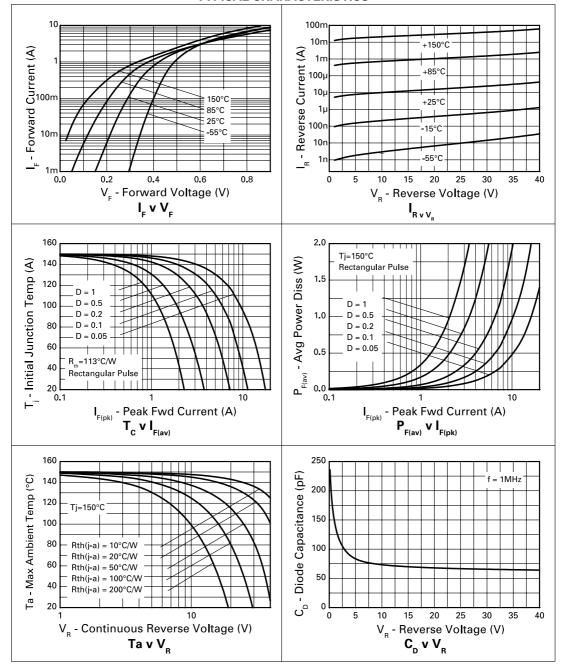
TYPICAL CHARACTERISTICS


ELECTRICAL CHARACTERISTICS (at Tamb = 25°C unless otherwise stated).

Reverse Breakdown Voltage	$V_{(BR)R}$	40			V	I _R =1mA
Forward Voltage	V _F		260	-	mV	I _F =50 mA*
			290	-	mV	I _F =100 mA*
			322	-	mV	I _F =250mA*
			360	370	mV	I _F =400mA*
			420	430	mV	I _F =750mA*
			470	490	mV	I _F =1000mA*
			520	640	mV	I _F =1500mA*
			610		mV	I _F =1000mA*
			500			$I_F = 2000 \text{ mA*, Ta} = 100^{\circ}\text{C}$
Reverse Current	I _R		11	20	μΑ	V _R =30V
Diode Capacitance	C _D		31		pF	f=1MHz,VR=30V
Reverse Recovery Time	t _{rr}		2.58		ns	Switched from I _F = 500mA
Reverse Recovery Charge	Q _{rr}		1.45		nC	to $V_R = 5V$. Measured @ $I_R 50mA$ di / dt > 1A / ns.
						Rsource = 6 ohm.

^{*}Measured under pulsed conditions.

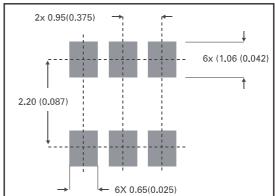
Operational Efficiency chart


The operational efficiency chart indicates the beneficial use of the ZLLS Series diodes in applications requiring higher voltage, higher temperature operation. Circuits requiring Low voltage Low temperature operation will benefit from using Zetex low V_F ZHCS Series diodes.

Operational Efficiency Example



TYPICAL CHARACTERISTICS



ZETEX

PACKAGE DIMENSIONS

PAD LAYOUT DETAILS

DIM	Millimetres		
	Min	Max	
А	0.90	1.45	
A1	0.00	0.15	
A2	0.90	1.30	
b	0.20	0.50	
С	0.09	0.26	
D	2.70	3.10	
Е	2.20	3.20	
E1	1.30	1.80	
L	0.10	0.60	
е	0.95 REF		
e1	1.90 REF		
θ	0°	30°	

© Zetex plc 2001

Zetex plc Fields New Road Chadderton Oldham, OL9 8NP United Kingdom Telephone (44) 161 622 4422 Fax: (44) 161 622 4420

Zetex GmbH Streitfeldstraße 19 D-81673 München

Germany Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 Zetex Inc 700 Veterans Memorial Hwy Hauppauge, NY11788

USA

Telephone: (631) 360 2222 Fax: (631) 360 8222 Zetex (Asia) Ltd 3701-04 Metroplaza, Tower 1 Hing Fong Road Kwai Fong Hong Kong

Hong Kong Telephone: (852) 26100 611 Fax: (852) 24250 494

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to **www.zetex.com**

