

Low Power, Current Feedback Dual Operational Amplifier

Data Sheet

April 2003

Features

280MHz small signal bandwidth

- 1100V/µs slew rate
- 3.3mA/channel static supply current
- 60Mhz gain flatness to +/- 0.1dB
- 8 pin SOIC

Applications

- · Video switchers/routers
- Video line drivers
- · Twisted pair driver/receiver
- Active filters
- · Cable drivers

Description

The ZL40121 is a low power, dual, current feedback operational amplifier offering high performance at a low cost. The device provides a very high output current drive capability of 65mA while requiring only 3.3mA of static supply current per channel. This feature makes the ZL40121 the ideal choice where a high density of high speed devices is required.

Ordering Information

ZL40121/DCA (tubes) 8 lead SOIC ZL40121/DCB (tape and reel) 8 lead SOIC

-40°C to +85°C

The 280MHz Av=+1V/V small signal bandwidth and $1100V/\mu s$ slew rate make the device an excellent solution for component video applications such as driving RGB signals down significant cable lengths.

Other applications which may take advantage of the ZL40121 dynamic performance features and matched amplifiers include low cost high order active filters and twisted pair driver/receivers.

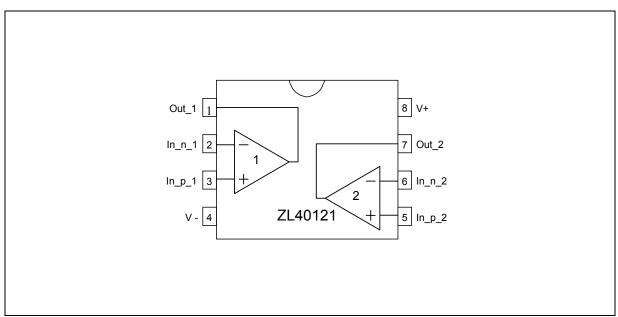


Figure 1 - Functional Block Diagram and Pin Connection

Application Notes

Current Feedback Op Amps

Current feedback op amps offer several advantages over voltage feedback amplifiers:

- · AC bandwidth not dependent on closed loop gain
- High Slew Rate
- · Fast settling time

The architecture of the current feedback opamp consists of a high impedance non-inverting input and a low impedance inverting input which is always feedback connected. The error current is amplified by a transimpedance amplifier which can be considered to have gain

$$Z(f) = \frac{Z_o}{1 + j \left(\frac{f}{f_o}\right)}$$

where Z_0 is the DC gain.

It can be shown that the closed loop non-inverting gain is given by

$$\frac{Vout}{Vin} = \frac{Av}{1 + j \left(\frac{fR_f}{f_o Z_o}\right)}$$

where Av is the DC closed loop gain, R_f is the feedback resistor. The closed loop bandwidth is therefore given by

$$BW_{CL} = \frac{f_o Z_o}{R_f} = \frac{GB_{OL}}{R_f}$$

and for low values of closed loop gain Av depends only on the feedback resistor R_f and not the closed loop gain. This can readily be seen from the performance characteristic frequency response graph with varying R_f

It can be shown that increasing the value of R_f

- Increases closed loop stability
- Decreases loop gain
- · Decreases bandwidth
- · Reduces gain peaking
- Reduces overshoot

Using a resistor value of R_f =510 Ω for Av=+2 V/V gives good stability and bandwidth. However since requirements for stability and bandwidth vary it may be worth some experimentation to find the optimal R_f for a given application.

Layout Considerations

Correct high frequency operation requires a considered PCB layout as stray capacitances have a strong influence over high frequency operation for this device. This is particularly important for high performance current feedback opamps. The Zarlink evaluation board serves as a good example layout that should be copied. The following guidelines should be followed:

- Include 6.8uF tantalum and 0.1uF ceramic capacitors on both positive and negative supplies
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitances
- Minimize all trace lengths to reduce series inductance

Application Diagrams

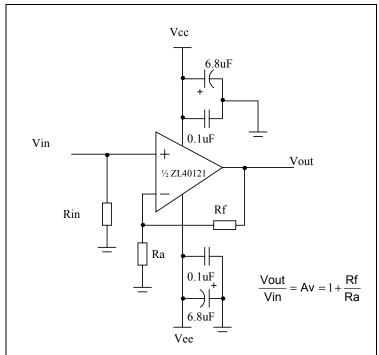


Figure 2 - Non-inverting Gain

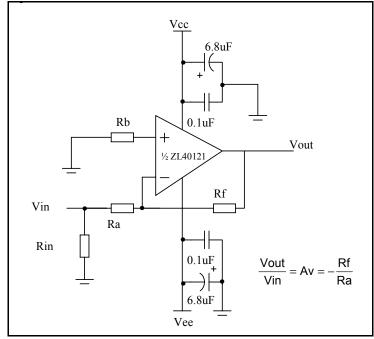


Figure 3 - Inverting Gain

Absolute Maximum Ratings

	Parameter	Symbol	Min	Max	Units
1	Vin Differential	V _{IN}		±1.2	V
2	Output Short Circuit Protection	V _{OS/C}		See Apps Note in this data sheet	
3	Supply voltage V+, V-		±6.5	V	
4	Voltage at Input Pins	$V_{(+IN)}, V_{(-IN)}$	V-	V+	V
5	Voltage at Output Pins	Vo	V-	V+	V
6	EDS Protection (HBM Human Body Model) (see Note 2)		2	(see Note 3)	kV
7	Storage Temperature		-55	+150	°C
8	Latch-up test		±100mA for 100ms	(see Note 4)	
9	Supply transient test		20% pulse for 100ms	(see Note 5)	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Operating Range

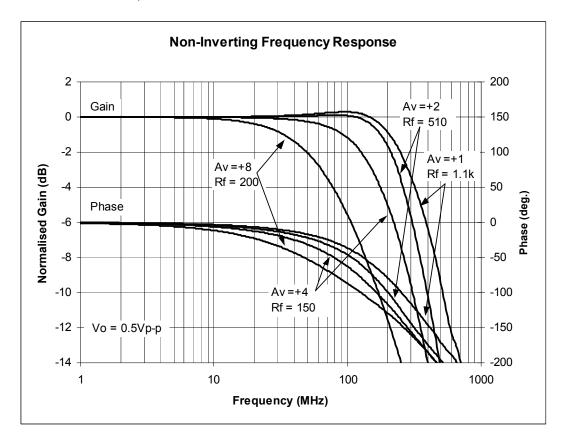
Characteristic	Min	Тур	Max	Units	Comments
Supply Voltage (Vcc)	±4.0		±6.0	V	
Operating Temperature (Ambient)	-40		+85	°C	
Junction to Ambient resistance	Rth(j-a)	150		°C 4 layer FR4 board	
Junction to Case resistance	Rth(j-c)	60		°C 4 layer FR4 board	

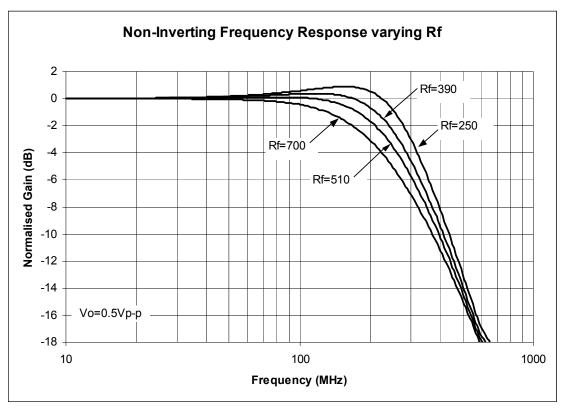
Note 2: Human body model, $1.5k\Omega$ in series with 100pF. Machine model, 20Ω in series with 100pF.

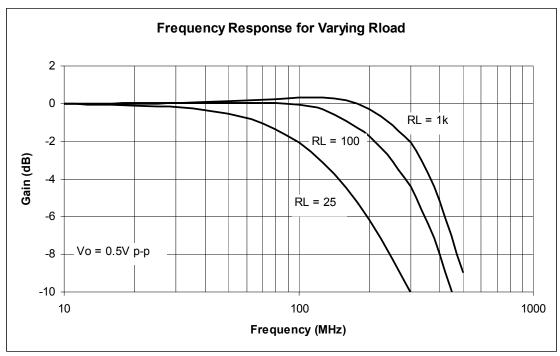
Note 3: 0.8kV between the pairs of +INA, -INA and +INB pins only. 2kV between supply pins, OUTA or OUTB pins and any input pin.

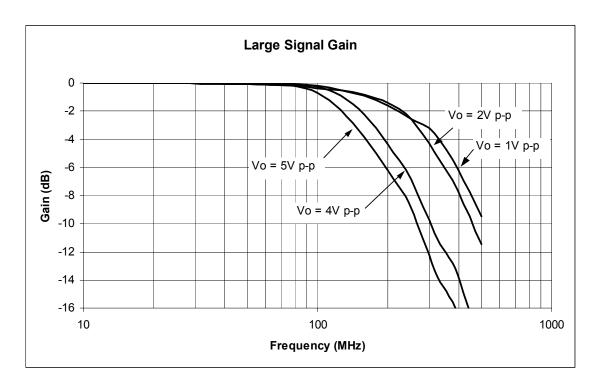
Note 4: ±100mA applied to input and output pins to force the device to go into "latch-up". The device passes this test to JEDEC spec 17.

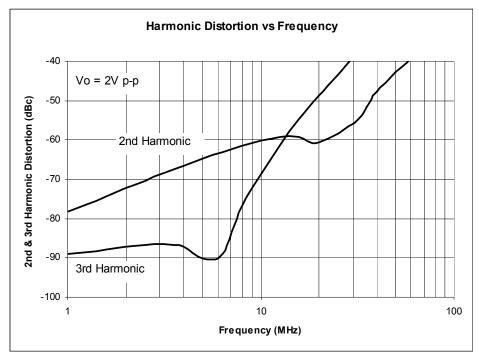
Note 5: Positive and Negative supply transient testing increases the supplies by 20% for 100ms.

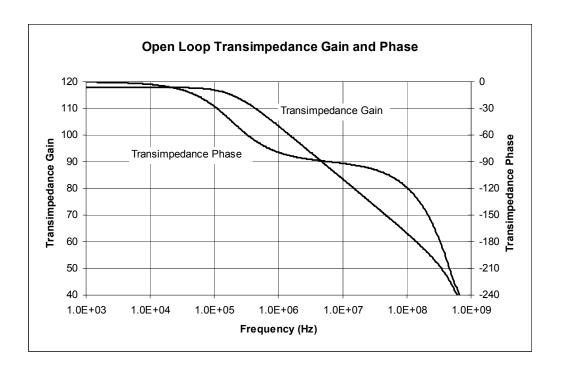

Electrical Characteristics - Vcc= \pm 5V, T_{amb}=25C(typ.),T_{amb}=-40C to +85C(min-max), Av=+2V/V, Rf=510 Ω , Rload=100 Ω unless specified

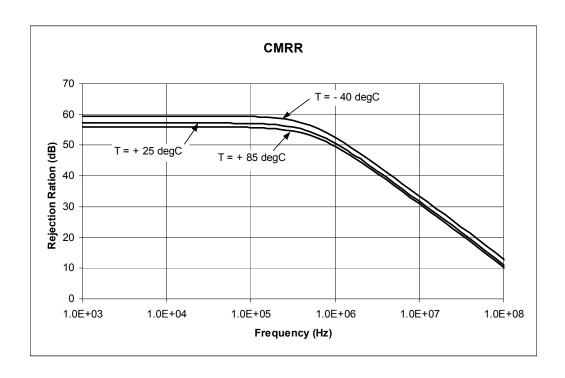

Characteristic	Conditions	Typ 25C	Min/ Max 25C	Min /Max -40 to +85C	Units	Test Type ¹
Frequency Domain Response		1			1	
-3dB Bandwidth	Av=+1; Vo < 0.5Vp-p; Rf=1.5kΩ	280	-	-	MHz	С
	Av=+2; Vo < 0.5Vp-p; Rf=510Ω	230	-	-	MHz	С
	Av=+2; Vo < 5Vp-p; Rf=510Ω	130	-	-	MHz	С
+/- 0.1dB Flatness	Av=+2; Vo < 0.5Vp-p; Rf=510Ω	60	-	-	MHz	С
Differential Gain (NTSC)	Rload=150 Ω	0.02	-	-	%	С
Differential Phase (NTSC)	Rload=150 Ω	0.06	-	-	deg.	С
Time Domain Response		1	ı		1	
Rise and Fall Time	Vout=0.5V Step	1.4	-	-	ns	С
	Vout=5V Step	3.6	-	-	ns	С
Settling Time to 0.1%	Vout=2V Step	6	-	-	ns	С
Overshoot	Vout=0.5V Step	6	-	-	%	С
Slew Rate	Vout=5V Step	1100	-	-	V/μs	С
Noise and Distortion		•	•		1	
2 nd Harmonic Distortion	Vout=2Vp-p, 1MHz	-78	-	-	dBc	С
3 nd Harmonic Distortion	Vout=2Vp-p, 1MHz	-88	-	-	dBc	С
Equivalent Input Noise						
Voltage	>1MHz	6.4	-	-	nV √Hz	С
Non-Inverting Current	>1MHz	1.0	-	-	pV √Hz	С
Inverting Current	>1MHz	9.3	-	-	pA √Hz	С
Static, DC Performance		•	•		•	
Input Offset Voltage		1.4	± 6.0	± 7.5	mV	Α
Average Drift		-	-	15	uV/deg. C	С
Input Bias Current – Non-inverting		1.3	±2.6	±2.8	uA	Α
Average Drift		-	-	2.6	nA/deg. C	С

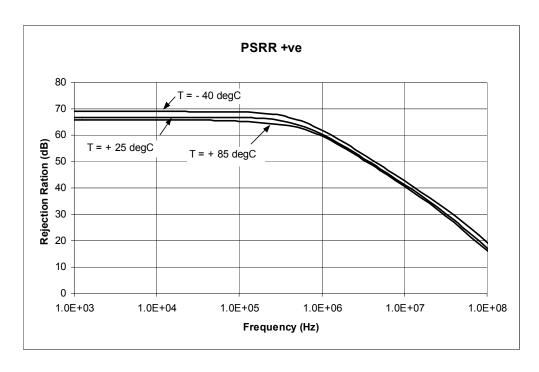

Characteristic	Conditions	Typ 25C	Min/ Max 25C	Min /Max -40 to +85C	Units	Test Type ¹
Input Bias Current – Inverting		4.4	±14	±15	uA	Α
Average Drift		-	-	16	nA/deg. C	С
Power Supply Rejection Ratio (+ve)	DC	65	63	62	dB	Α
Power Supply Rejection Ratio (-ve)	DC	62	58	56	dB	Α
Common Mode Rejection Ratio	DC	57	54	53	dB	Α
Supply Current (per Channel)	Quiescent	3.3	4.5	4.7	mA	Α
Miscellaneous Performance						
Input Resistance (Non-inverting)		19.0	-	-	МΩ	С
Input Capacitance (Non-inverting)		1	-	-	pF	С
Common Mode Input Range		±2.3	±2.2	±1.9	V	Α
Output Voltage Range	Rload=100 Ω	±2.8	±2.7	±2.6	V	Α
Output Current (max)		65	-	-	mA	С
Output Resistance, Closed Loop	DC	110	-	-	mΩ	С

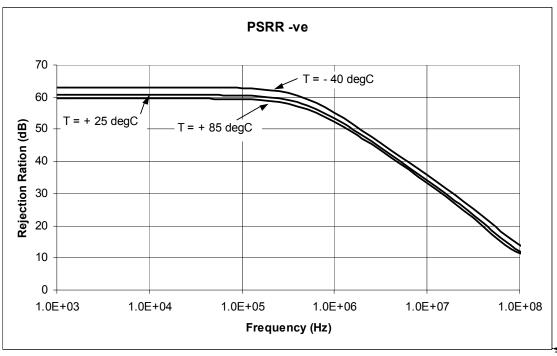

NOTE 1: Test Types:
(A) 100% tested at 25°C. Over temperature limits are set by characterization and simulation.
(B) Limits set by characterization or simulation.
(C) Typical value only for information.

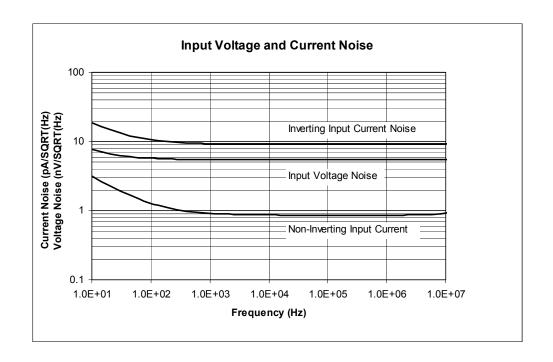

Typical Performance Characteristics - T_{amb} =25degC, V_{supply} =± 5V, R_{supply} =*

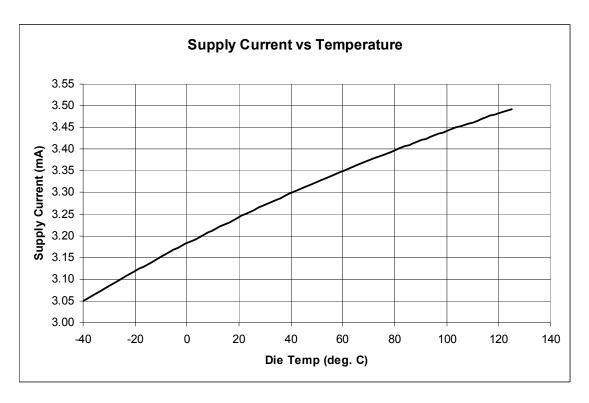


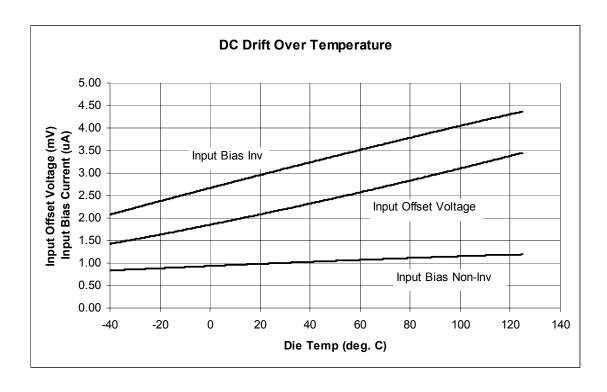


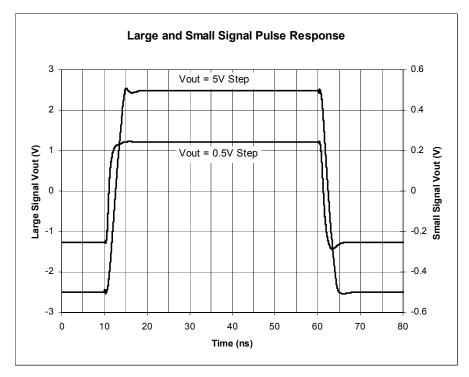


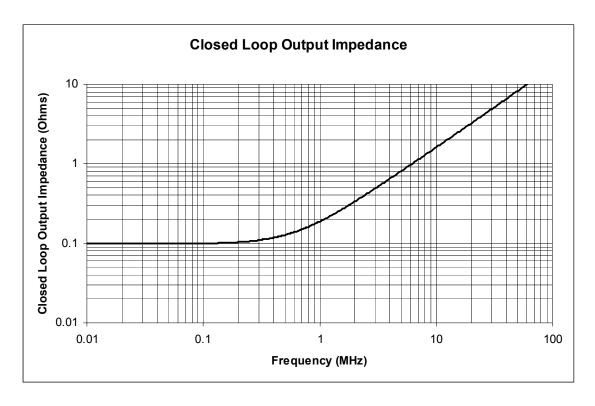


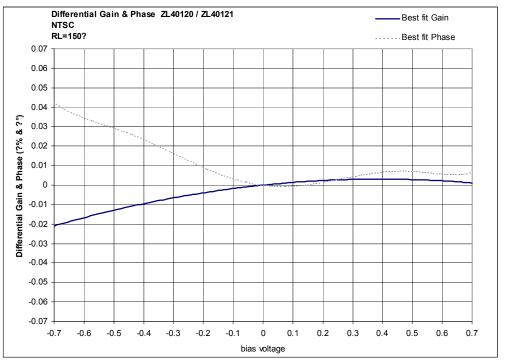


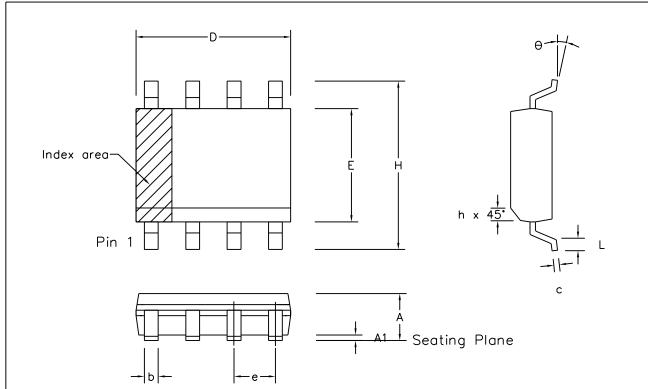












	Min	Max	Min	Max			
	mm	mm	mm inch				
Α	1.35	1.75	0.053	0.069			
A1	0.10	0.25	0.004	0.010			
D	4.80	5.00	0.189	0.197			
Н	5.80	6.20	0.228	0.244			
E	3.80	4.00	0.150	0.157			
L	0.40	1.27	0.016	0.050			
е	1.27	BSC	0.050 BSC				
b	0.33 0.51		0.013	0.020			
С	0.19	0.25	0.008	0.010			
0	O°	8 °	0°	8°			
h	0.25	0.50	0.010	0.020			
	Pin Features						
N	8 8						
Conforms to JEDEC MS-012AA Iss. C							

Notes:

- 1. The chamfer on the body is optional. If not present, a visual index feature, e.g. a dot, must be located within the cross—hatched area.
- 2. Controlling dimensions are in inches.
- 3. Dimension D do not include mould flash, protusion or gate burrs. These shall not exceed 0.006" per side.
- 4. Dimension E1 do not include inter-lead flash or protusion. These shall not exceed 0.010" per side.
- 5. Dimension b does not include dambar protusion / intrusion. Allowable dambar protusion shall be 0.004" total in excess of b dimension.

© Zarlink Semiconductor 2002 All rights reserved.								Package Code
ISSUE	1	2	3	4	5		Previous package codes	Package Outline for
ACN	6745	201936	202595	203705	212424	ZARLINK SEMICONDUCTOR	MP / S	8 lead SOIC (0.150" Body width)
DATE	5Apr95	27Feb97	12Jun97	9Dec97	22Mar02		,	,
APPRD.								GPD00010

For more information about all Zarlink products visit our Web Site at www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE