6 Channel DC/DC Converters

General Description

The RT9911 is a complete power-supply solution for digital still cameras and other hand-held devices. It integrates one selectable Boost/Buck DC-DC converter, one highefficiency step-down DC-DC converter, one high-efficiency main step-up converter, one PWM converter for CCD positive voltage, one inverter for CCD negative voltage and one white LED driver for LCD backlight. The RT9911 is targeted for applications that use either two or three primary cells or a single lithium-ion battery.

RT9911 is available in VQFN-40L6x6. Each DC-DC converter has independent shutdown input.

Ordering Information

RT9911 ㅁㅁ
-Package Type QV : VQFN-40L 6x6 (V-Type)
Operating Tëmperature Range P: Pb Free with Commercial Standard G: Green (Halogen Free with Commercial Standard)

Note :
Richtek Pb-free and Green products are:
RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

Suitable for use in SnPb or Pb -free soldering processes.
$>100 \%$ matte tin (Sn) plating.

Applications

- Digital Still Camera
- PDA
- ProtableDevice

Features

- 1.6V to 5.5V Battery Input Voltage Range
- Synchronous Boost/Buck Selectable DC-DC Converter
-Internal Switches
Up to 95\% Efficiency
- Syn-Buck DC-DC Converters
$>0.8 \mathrm{~V}$ to 5.5 V Adjustable Output Voltage
Up to 95\% Efficiency
-100\% (MAX) Duty Cycle
-Internal Switches
- Main Boost DC-DC Converter
-Adjustable Output Voltage
-Up to 97\% Efficiency
- PWM Converter for CCD Positive Voltage
- Inverter for CCD Negative Voltage
- White LED Driver for LCD Panel Backlight
- Up to 1.4MHz Adjustable Switching Frequency
- $1 \mu \mathrm{~A}$ Supply Current in Shutdown Mode
- External Compensation Network for all Converters
- Independent Enable Pin to Shutdown Each Channel.
- 40-Lead VQFN Package
- RoHS Compliant and 100\% Lead (Pb)-Free

Pin Configurations

Typical Application Circuit

Figure 1. Application Circuit for 2-Cells Battery Supply
Note :

- Bottom pad is GND pad, can be short to pin 6 (GND).
- Please remove Q2 when use Async Boost and remove D5 when use Sync Boost.

Figure 2. Application Circuit for Li-ion Battery Supply
Note :

- Bottom pad is GND pad, can be short to pin 6 (GND).
- Please remove Q2 when use Async Boost and remove D5 when use Sync Boost.
- Output voltage setting

CH1: $0.8 \mathrm{Vx}(1+\mathrm{R} 1 / \mathrm{R} 2) \mathrm{ex}: \mathrm{I} / \mathrm{O} 3.3 \mathrm{~V}=0.8 \mathrm{x}(1+470 \mathrm{k} / 150 \mathrm{k})$
$\mathrm{CH} 2: 0.8 \mathrm{Vx}(1+\mathrm{R} 4 / \mathrm{R} 5)$ ex: $\mathrm{DDR} 2.5 \mathrm{~V}=0.8 \mathrm{x}(1+470 \mathrm{k} / 226 \mathrm{k})$
CH3: $0.8 \mathrm{Vx}(1+\mathrm{R} 8 / \mathrm{R} 9)$ ex: MOTOR $5 \mathrm{~V}=0.8 \mathrm{x}(1+470 \mathrm{k} / 90.9 \mathrm{k})$
CH4: 1.0Vx(1+R10/R11) ex: CCD $12 \mathrm{~V}=1.0 \mathrm{x}(1+2.2 \mathrm{M} / 205 \mathrm{k})$
CH5: -1.0Vx(R13/R14) ex: CCD $-8 \mathrm{~V}=-1.0 \mathrm{x}(1 \mathrm{M} / 125 \mathrm{k})$

Functional Pin Description

Pin No.	Pin Name	Pin Function	I/O	Internal State at Shut Down	I/O Configuration
1	GND	Analog Ground Pin	--	-	
2	OK2	External Switch Control.	OUT	High Impedance	
3	RT	Frequency Setting Pin. Frequency is 500 kHz if RT pin not connected.	OUT	Pull Low	
5	VDDM	Device Input Power Pin	IN	-	
6	GND	Analog Ground Pin	--	-	
4	VREF	1.0V Reference Pin	OUT	High Impedance	
7	FB1	Feedback Input Pin of CH 1.	IN	High Impedance	O- COMP1
8	COMP1	Feedback Compensation Pin of CH 1 .	OUT	Pull Low	
9	PGND1	Power Ground Pin of CH1.	--	-	PVDD1 9
10	LX1	Switch Node of CH1.	OUT	High Impedance	LX
11	PVDD1	Power Input Pin of CH1.	IN	-	PGN゚D1
12	COMP5	Feedback Compensation Pin of CH5.	OUT	Pull Low	
13	FB5	Feedback Input Pin of CH5.	IN	High Impedance	
14	EXT5	External Power Switch of CH 5.	OUT	Pull High	PVDD5
15	PVDD5	Power Input Pin of $\mathrm{CH} 4, \mathrm{CH} 5$ and CH6.	IN	-	
16	COMP4	Feedback Compensation Pin of CH4.	OUT	Pull Low	
17	FB4	Feedback Input Pin of CH 4.	IN	High Impedance	

To be continued

Pin No.	Pin Name	Pin Function	I/O	Internal State at Shut Down	I/O Configuration
18	EXT4	External Power Switch of CH4.	OUT	Pull Low	
19	EXT6	External Power Switch of CH6.	OUT	Pull Low	
20	PVDD3	Power Input Pin of CH3.	IN	--	PVDD3
24	DRP3	External PMOS Switch Pin for CH 3.	OUT	Pull High	
21	COMP6	Feedback Compensation Pin of CH6.	OUT	Pull Low	$0.2 \mathrm{Vo-r}{ }^{+}$COMP6
22	CFB6	Current Feedback Input Pin for CH6.	IN	High Impedance	
23	VFB6	Voltage Feedback Input Pin for CH6.	IN	High Impedance	
25	DRN3	External NMOS Switch Pin for CH 3.	OUT	Pull Low	
26	CS3	Current Sense Input Pin for CH3	IN	High Impedance	

To be continued

Pin No.	Pin Name	Pin Function	I/O	Internal State at Shut Down	I/O Configuration
27	COMP3	Feedback Compensation Pin of CH3	OUT	Pull Low	High Impedance

To be continued

Pin No.	Pin Name	Pin Function	I/O	Internal State at Shut Down	I/O Configuration
37	EN3	Enable Input Pin of CH3.	IN	Pull Low	
38	EN4	Enable Input Pin of CH 4.	IN	Pull Low	
39	EN5	Enable Input Pin of CH5.	IN	Pull Low	
40	EN6	Enable Input Pin of CH6.	IN	Pull Low	
Exposed Pad (41)	GND	The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.	--	--	-

Function Block Diagram

Absolute Maximum Ratings (Note 1)

- Supply Voltage, VDDM
-0.3 V to 7 V
- Power Switch
-0.3 V to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
- The Other Pins
-0.3 V to 7 V
- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ VQFN-40L 6x6 2.778W
- Package Thermal Resistance (Note 4)
VQFN-40L 6x6, θ_{JA}
$36^{\circ} \mathrm{C} / \mathrm{W}$

- ESD Susceptibility (Note 2)
HBM (Human Body Mode) 2kV

Recommended Operating Conditions (Note 3)

- Dimming Control Frequency Range, CH6 --300Hz to 900Hz

Electrical Characteristics

($\mathrm{V}_{\mathrm{DDM}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Supply Voltage						
VDDM Minimum Startup Voltage	$\mathrm{V}_{\text {ST }}$	(Note 5)	--	--	1.6	V
VDDM Operating Voltage	V ${ }_{\text {DDM }}$	VDDM Pin Voltage	2.4	--	5.5	V
VDDM Over Voltage Protection			5.9	6.5	--	V
Supply Current						
Shutdown Supply Current into VDDM	loff	$\begin{aligned} & \text { EN1 = EN2 = EN3 = EN4 = EN5 } \\ & =\text { EN6 = OV } \end{aligned}$	--	1	10	uA
CH1 (Sync-Boost or Syn-Buck) Supply Current into VDDM	lQ1	VDDM $=3.3 \mathrm{~V}$, Non-Switching	--	--	430	uA
CH2 (Sync-Buck) Supply Current into VDDM	lQ2	VDDM $=3.3 \mathrm{~V}$, Non-Switching	--	--	350	uA
CH3 (Sync-Boost) Supply Current into VDDM	lQ3	VDDM $=3.3 \mathrm{~V}$, Non-Switching	--	--	350	uA
CH4 (Asyn-Boost) Supply Current into VDDM	IQ4	VDDM $=3.3 \mathrm{~V}$, Non-Switching	--	--	300	uA
CH5 (Asyn-Inverter) Supply Current into VDDM	lQ5	$V_{\text {DDM }}=3.3 \mathrm{~V}$, Non-Switching	--	--	300	uA
CH6 (Asyn-Boost) Supply Current into VDDM	lQ6	$V_{\text {DDM }}=3.3 \mathrm{~V}$, Non-Switching	--	--	350	uA

To be continued

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Oscillator						
Operation Frequency	fosc	RT Open	450	550	650	kHz
CH1 Maximum Duty Cycle (Boost)	$\mathrm{D}_{\text {MAX1 }}$	SELECT $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB} 1}=0.7 \mathrm{~V}$	80	85	90	\%
CH1 Maximum Duty Cycle (Buck)	DMAX1	$\mathrm{SELECT}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB} 1}=0.7 \mathrm{~V}$	100	--	--	\%
CH2 Maximum Duty Cycle	$\mathrm{D}_{\text {MAX2 }}$	$\mathrm{V}_{\mathrm{FB} 2}=0.7 \mathrm{~V}$	100	--	--	\%
CH3 Maximum Duty Cycle	$\mathrm{D}_{\text {MAX }}$	$\mathrm{V}_{\mathrm{FB} 3}=0.7 \mathrm{~V}$	75	80	90	\%
CH4 Maximum Duty Cycle	$\mathrm{D}_{\text {MAX4 }}$	$\mathrm{V}_{\mathrm{FB4} 4}=0.9 \mathrm{~V}$				
CH5 Maximum Duty Cycle	DMAX5	$\mathrm{V}_{\mathrm{FB} 5}=0.1 \mathrm{~V}$	90	94	98	\%
CH6 Maximum Duty Cycle	DMAX6	$\mathrm{V}_{\text {CFB6 }}=0.18 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB6} 6}=0.9 \mathrm{~V}$				
Feedback Regulation Voltage						
Feedback Regulation Voltage @ FB1, FB2, FB3	$\mathrm{V}_{\mathrm{FB} 1,2,3}$		0.788	0.8	0.812	V
Feedback Regulation Voltage @FB4	$V_{\text {FB4 }}$		0.98	1	1.02	V
Feedback Regulation Voltage @ FB5	$V_{\text {FB5 }}$		-15	--	+15	mV
Feedback Regulation Voltage @ VFB6	$\mathrm{V}_{\mathrm{VFB}}$		--	1	--	V
Feedback Regulation Voltage @ CFB6	$\mathrm{V}_{\text {CFB6 }}$		0.18	0.2	0.22	V
Reference						
VREF Output Voltage	$V_{\text {REF }}$		0.984	1	1.016	V
VREF Load Regulation		$0 \mathrm{uA}<\mathrm{I}_{\text {REF }}<100 \mathrm{uA}$	--	--	10	mV
Error Amplifier						
$\mathrm{GM}(\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3, \mathrm{CH} 4, \mathrm{CH} 5, \mathrm{CH} 6)$			--	0.2	--	ms
Compensation Source Current (CH 1 , $\mathrm{CH} 2, \mathrm{CH} 3, \mathrm{CH} 4, \mathrm{CH} 5, \mathrm{CH} 6)$			--	22	--	uA
Compensation Sink Current ($\mathrm{CH} 1, \mathrm{CH} 2$, CH3, CH4, CH5, CH6)			--	22	--	uA
Power Switch						
CH1 On Resistance of MOSFET	R DS(ON)P1	P-MOSFET, $\mathrm{PV}_{\text {DD1 }}=3.3 \mathrm{~V}$	--	200	300	$\mathrm{m} \Omega$
	RDS(ON)N1	$\mathrm{N}-\mathrm{MOSFET}, \mathrm{PV}$ DD1 $=3.3 \mathrm{~V}$	--	200	300	$\mathrm{m} \Omega$
CH1 Switch Current Limitation (Buck)		SELECT=0	1.3	2	4	A
CH1 Switch Current Limitation (Boost)		SELECT=1	2	2.5	4	A
CH2 On Resistance of MOSFET	R ${ }_{\text {DS(ON)P2 }}$	P-MOSFET, PV ${ }_{\text {DD2 }}=3.3 \mathrm{~V}$	--	300	450	$\mathrm{m} \Omega$
	R DS (ON)N2	$\mathrm{N}-\mathrm{MOSFET}, \mathrm{PV} \mathrm{DD2}=3.3 \mathrm{~V}$	--	300	450	$\mathrm{m} \Omega$
CH2 Switch Current Limitation			1.3	2	4	A
CH3 On Resistance of DRN3	R DS(ON)NP3	P-MOSFET, PV ${ }_{\text {DD3 }}=3.3 \mathrm{~V}$	--	6	15	Ω
	RDS(ON)NN3	N-MOSFET, PV ${ }_{\text {DD3 }}=3.3 \mathrm{~V}$	--	6	15	Ω
CH3 On Resistance of DRP3	RDS(ON)PP3	$\mathrm{P}-\mathrm{MOSFET}, \mathrm{PV} \mathrm{DD}=3.3 \mathrm{~V}$	--	6	15	Ω
	RDS(ON)PN3	N-MOSFET, PVDD3 $=3.3 \mathrm{~V}$	--	6	15	Ω
CH4 On Resistance of MOSFET	R DS(ON)P4	P-MOSFET, PV ${ }_{\text {DD3 }}=3.3 \mathrm{~V}$	--	6	15	Ω
	R DS(ON)N4	$\mathrm{N}-\mathrm{MOSFET}, \mathrm{PV}$ DD3 $=3.3 \mathrm{~V}$	--	6	15	Ω

To be continued

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
Power Switch						
CH5 On Resistance of MOSFET	$\mathrm{R}_{\text {DS(ON)P5 }}$	P-MOSFET, PV ${ }_{\text {DD5 }}=3.3 \mathrm{~V}$	--	6	15	Ω
	$\mathrm{R}_{\mathrm{DS} \text { (ON)N5 }}$	N-MOSFET, PVDD5 $=3.3 \mathrm{~V}$	--	6	15	Ω
CH6 On Resistance of MOSFET	$\mathrm{R}_{\text {DS(ON)P6 }}$	$\mathrm{P}-\mathrm{MOSFET}, \mathrm{PV}$ DD5 $=3.3 \mathrm{~V}$	--	6	15	Ω
	$\mathrm{R}_{\text {DS(ON)N6 }}$	N-MOSFET, PV ${ }_{\text {DD5 }}=3.3 \mathrm{~V}$	--	6	15	Ω
Switch Controller						
OK2 pin Sink Current		$\mathrm{OK} 2=1 \mathrm{~V}$	90	--	--	uA
External Current Setting (CH3)						
CS3 Sourcing Current	ICS3		5	10	15	uA
VFB6 Sink Current	IVFB6		40	50	60	uA
Protection						
Under Voltage Protection Threshold Voltage @ FB1, FB2		SELECT $=0 \mathrm{~V}$	0.3	0.4	0.5	V
Over Voltage Protection @ FB1, FB2		SELECT = OV	--	1	--	V
Control						
EN1, EN2, EN3, EN4, EN5, EN6 Input High Level Threshold		$V_{\text {DDM }}=3.3 \mathrm{~V}$	--	--	1.3	V
EN1, EN2, EN3, EN4, EN5, EN6 Input Low Level Threshold		$\mathrm{V}_{\text {DDM }}=3.3 \mathrm{~V}$	0.4	--	--	V
EN1, EN2, EN3, EN4, EN5, EN6 Sink Current		VDDM $=3.3 \mathrm{~V}$	--	2	6	uA
Select Pin Input High Level Threshold			--	--	1.3	V
Select Pin Input Low Level Threshold			0.4	--	--	V
Select Pin Sink Current	ISELECT		--	2	6	uA
Thermal Protection						
Thermal Shutdown	$\mathrm{T}_{\text {SD }}$		125	180	--	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis	$\Delta T_{\text {SD }}$		--	20	--	${ }^{\circ} \mathrm{C}$

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
Note 2. Devices are ESD sensitive. Handling precaution recommended.
Note 3. The device is not guaranteed to function outside its operating conditions.
Note 4. θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.
Note 5. A Schottky retifier connected from LX1 to PVDD1 is required for low-voltage startup, refer to Figure 1.

Typical Operating Characteristics

CH1 Boost LX1 and Output Voltage Ripple

CH1 Buck LX1 and Output Voltage Ripple

CH1 Buck Load Transient Response

CH2 LX2 and Output Voltage Ripple

CH1 Buck Output Voltage vs. Output Current

CH2 Buck Efficiency vs. Output Current

CH2 LX2 and Output Voltage Ripple

CH2 Load Transient Response

CH2 Load Transient Response

CH2 Buck Output Voltage vs. Output Current

CH2 Load Transient Response

CH2 Output Voltage vs. VDDM Voltage

CH2 Buck Output Voltage vs. Output Current

CH3 LX3 and Output Voltage Ripple

Time ($1 \mu \mathrm{~s} /$ Div)

CH3 Boost Efficiency vs. Output Current

CH3 LX3 and Output Voltage Ripple

CH3 Load Transient Response

CH4 LX4 and Output Voltage Ripple

CH3 Boost Output Voltage vs. VDDM Voltage

CH4 Boost Efficiency vs. Output Current

CH4 Load Transient Response

CH5 LX5 and Output Voltage Ripple

CH4 Output Voltage vs. VDDM Voltage

CH5 Inverting Efficiency vs. Output Current

CH5 Load Transient Response

CH6 LX6 and Output Voltage Ripple

CH5 Output Voltage vs. VDDM Voltage

CH6 Efficiency vs. Input Voltage

CH7 Load Transient Response

CH 4 and CH 5 Power Sequence

Feedback Voltage vs. Temperature

Applications Information

The RT9911 includes the following six DC/DC converter channels to build a multiple-output power-supply system.

CH1 : Selectable step-up or step-down synchronous current mode DC/DC converter with internal power MOSFETs.

CH2 : Step-down synchronous current mode DC/DC converter with internal power MOSFETs.

CH3 : Step-up asynchronous current mode DC/DC controller to drive external power MOSFETs.

CH4 : Step-up asynchronous voltage mode DC/DC controller.

CH5 : Inverting DC/DC voltage mode controller.
CH6 : DC/DC voltage mode controller for WLED as well as conventional boost application; provides open LED OVP protection.

CH1 : Selectable Step-up or Step-down Converter

CH 1 is selectable as step-up (SELECT pin = logic high) or step-down (SELECT pin = logic low).

Step-up : With internal MOSFETs and synchronous rectifier, the efficiency is up to 95%. The converter always operates at fixed frequency PWM mode and CCM (continuous current mode).

Step-down : With internal MOSFETs and synchronous rectifier, the efficiency is up to 95%. The converter always operates at fixed frequency PWM mode and CCM. While the input voltage is close to output voltage, the converter enters low dropout mode. Duty could be as long as 100\% to extend battery life. See Figure 3(a) for detailed functional block.

CH2 : Step-down DC/DC Converter

With internal MOSFETs and synchronous rectifier, the efficiency is up to 95%. The converter always operates at fixed frequency PWM mode and CCM. While the input voltage is close to output voltage, the converter enters low dropout mode. Duty could be as long as 100% to extend battery life. See Figure 3(b) for detailed functional block.

CH3 : Step-up DCIDC Controller

With external MOSFETs and a synchronous rectifier, the efficiency is up to 97%. The converter always operates at fixed frequency PWM mode and CCM. The threshold of current limit is estimated by $R_{\mathrm{DS}(\mathrm{ON})}$ of external NMOS. See Protections for detailed information and detailed functional block in Figure 3(c).

CH4, CH6 : Step-up DC/DC Controller

CH 4 and CH 6 are fixed frequency voltage mode PWM controllers. EXT4 and EXT6 pins are designed to drive external NMOS switch. CH6 is optimized for WLED application. CFB6 is current-sensing feedback, and VFB6 provides over voltage protection (WLED open circuit). See Protections for detailed information and detailed functional block in Figure 3(d for CH 4 and e for CH 6).

CH5 : Inverting Controller

CH 5 is a voltage mode, fixed frequency PWM controller to generate negative output voltage. EXT5 is designed to drive external PMOS switch. To turn off PMOS completely, please note that PVDD5 should not be lower than the source voltage of PMOS. See Figure 3(f) for detailed functional block.

Reference Voltage

RT9911 provides a precise 1 V reference voltage with souring capability 100uA. Connect a 1 uF ceramic capacitor from VREF pin to GND. Reference voltage is enabled by connecting EN5 to logic high.

Figure 3(a)

Figure 3(c)

Figure 3(e)

Figure 3(b)

Figure 3(d)

Figure 3(f)

Figure 3. Detailed Functional Block for each channel

Note :

- Please refer to Figure 1 for application Information.
- Timing sequence should be controlled by EN pins.

Figure 4. Timing Diagram

Calculation method:

Td1 to Td6 are precise value. $\operatorname{Tr} 1$ to $\operatorname{Tr} 6$ are approximation.
Units : T in second, C in Farad, R in Ohm
C 31 to C 36 : Compensation capacitor of CH 1 to CH 6 .
T1d $=0.7 \mathrm{~V} \times \mathrm{C} 31 / 2 \mathrm{uA}$ (CH1 Boost)
T1d $=0.7 \mathrm{~V} \times \mathrm{C} 31 / 2 \mathrm{uA}(\mathrm{CH} 1$ Buck)
$\mathrm{T} 2 \mathrm{~d}=0.35 \mathrm{~V} \times \mathrm{C} 32 / 2 \mathrm{uA}$
$\mathrm{T} 3 \mathrm{~d}=0.7 \mathrm{~V} \times \mathrm{C} 33 / 2 \mathrm{uA}$
$\mathrm{T} 4 \mathrm{~d}=0.35 \mathrm{~V} \times \mathrm{C} 34 / 2 \mathrm{uA}$
T5d $=0.85 \mathrm{~V} \times \mathrm{C} 35 / 2 \mathrm{uA}$
T6d $=0.85 \mathrm{~V} \times \mathrm{C} 36 / 2 \mathrm{uA}$
$\mathrm{T} 1 \mathrm{r}=\left(0.5 \mathrm{~V} \times \mathrm{D} 1+0.48 \mathrm{~A} \times \mathrm{R}_{\mathrm{DS}(\mathrm{ON}) _\mathrm{N}} \times \mathrm{C} 31 / 1.25 \mathrm{uA} @ \mathrm{No}\right.$ load (Boost)
$\mathrm{T} 1 \mathrm{r}=\left(0.33 \mathrm{~V} \times \mathrm{D} 1+0.2 \mathrm{~A} \times \mathrm{R}_{\mathrm{DS}(\mathrm{ON}) _\mathrm{P}} \times \mathrm{C} 31 / 1.25 \mathrm{uA} @ \mathrm{No}\right.$ load (Buck)
$\mathrm{T} 2 \mathrm{r}=\left(0.33 \mathrm{~V} \times \mathrm{D} 2+0.2 \mathrm{~A} \times \mathrm{R}_{\mathrm{DS}(\mathrm{ON})_{\mathrm{L}} \mathrm{P}} \times \mathrm{C} 32 / 1.25 \mathrm{uA} @ \mathrm{No}\right.$ load
$\mathrm{T} 3 \mathrm{r}=\left(0.5 \mathrm{~V} \times \mathrm{D} 3+0.8 \mathrm{~A} \times \mathrm{R}_{\mathrm{DS}(\mathrm{ON}) _\mathrm{N}} \times \mathrm{C} 33 / 3.6 \mathrm{uA} @ \mathrm{No}\right.$ load
$\mathrm{T} 4 \mathrm{r}=(1.0 \mathrm{~V} \times \mathrm{D} 4) \times \mathrm{C} 34 / 1 \mathrm{uA} @$ No load
$\mathrm{T} 5 \mathrm{r}=(1.0 \mathrm{~V} \times \mathrm{D} 5) \times \mathrm{C} 35 / 1 \mathrm{uA} @ 1 \mathrm{~mA}$ min. load
$\mathrm{T} 6 \mathrm{r}=(0.25 \mathrm{~V} \times \mathrm{D} 6) \times \mathrm{C} 36 / 2.6 \mathrm{uA} @ 4$ WLEDs
where
$\mathrm{D} 1=1-\left(\mathrm{V}_{\mathrm{BAT}} / \mathrm{V}_{\mathrm{Vs} 3.3 \mathrm{~V}}\right)$ (Boost)
$\mathrm{D} 1=\mathrm{V}_{\mathrm{Vs} 3.3 \mathrm{~V}} / \mathrm{V}_{\mathrm{BAT}} \quad$ (Buck)
$\mathrm{D} 2=\mathrm{V}_{\mathrm{VCORE}} 1.8 \mathrm{~V} / \mathrm{V}_{\mathrm{BAT}}$
$\mathrm{D} 3=1-\left(\mathrm{V}_{\mathrm{BAT}} / \mathrm{V}_{\text {Motor 5V }}\right)$
$\mathrm{D} 4=1-\left(\mathrm{V}_{\mathrm{BAT}} / \mathrm{V}_{\mathrm{CCD}} 12 \mathrm{~V}\right)$
$\mathrm{D} 5=\left|\mathrm{V}_{\mathrm{CCD}}-8 \mathrm{~V}\right| /\left(\mathrm{V}_{\mathrm{BAT}}+\left|\mathrm{V}_{\mathrm{CCD}-8 \mathrm{~V}}\right|\right)$
$\mathrm{D} 6=1-\left(\mathrm{V}_{\mathrm{BAT}} / \mathrm{V}_{\text {WLED }}\right)$
Example : T1d $=0.7 \mathrm{~V} \times 1 \mathrm{nF} / 2 \mathrm{uA}=350 \mathrm{us}$ (Boost)
$\mathrm{T} 1 \mathrm{r}=(0.5 \times(1-1.8 / 3.3)+0.48 \times 0.2) \times 1 \mathrm{nF} / 1.25 \mathrm{uA}=$ 258 us

Oscillator

The internal oscillator synchronizes CH 1 to CH 6 with fixed operation frequency. The frequency could be set by connecting resistor between RT pin to GND. See Figure 5 to adjust frequency.

Soft Start

With internal soft start mechanism, the soft start time of each channel is proportional to the compensation capacitor. Refer to the soft start waveform in Figure 4 for typical application.

Figure 5. Adjust Frequency

Table 1

	Protection type	Threshold (typical) Refer to Electrical spec	Protection methods	Reset method
VDDM	Over Voltage Protection	VDDM > 6.5V	Disable all channels	Restart if VDDM < 6.5V
CH 1 : Boost	Current Limit	NMOS current> 2.5A	NMOS latched off	Automatic reset at next clock cycle
CH 1 Buck	Current Limit	PMOS current > 2.0A	PMOS latched off and all channels shutdown	VDDM power reset
	Under Voltage Protection	FB1 < 0.4V	NMOS, PMOS latch off and all channels shutdown	VDDM power reset
	Over Voltage Protection	FB1 > 1.0V	NMOS, PMOS latch off and all channels shutdown	VDDM power reset
CH2	Current Limit	PMOS current > 2.0A	PMOS latched off and all channels shutdown	VDDM power reset
	Under Voltage Protection	FB2 < 0.4 V	NMOS, PMOS latch off and all channels shutdown	VDDM power reset
	Over Voltage Protection	FB2 > 1.0V	NMOS, PMOS latch off and all channels shutdown	VDDM power reset
CH3	Current Limit	CS3 $>0.3 \mathrm{~V}$, see below Note	NMOS latched off	Automatic reset at next clock cycle
CH6	Over Voltage Protection	VFB6 > 1.0V, see Figure 8	NMOS off	VFB6 < 1.0V
Thermal	Thermal shutdown	Temperature $>180^{\circ} \mathrm{C}$	All channels stop switching	Temperature $<160^{\circ} \mathrm{C}$

Note : If $R_{D S(O N)} \times l_{\text {inductor }}>0.3 \mathrm{~V}$, then current limit happens.
For example, if select $\operatorname{NMOS}(\mathrm{AOS3402}), \mathrm{R}_{\mathrm{DS}(O N)}=110 \mathrm{~m} \Omega$ (at $\mathrm{V}_{\mathrm{GS}}=2.5 \mathrm{~V}$), then current limt happens if linductor $>2.73 \mathrm{~A}$.

Figure 6. CH3 Current Limit Setting

RT9911 Component Selection for Compensation :

CH1 Sync-Boost (Select Pin = High Logic) :

CH 1 sync-boost converter employs current-mode control to simplify the control loop compensation. There is a RHPZ (Right Hand Plane Zero) appeared in the loop-gain frequency response when a boost converter operates with continuous inductor current (typically the case), we also call it works in CCM (Continuous Current Mode). For stability, cross over frequency (f_{C}), unity gain frequency, must lower than this RHPZ frequency.

The fixed parameters for CH 1 boost compensation are as follows :

- Transconductance (from FB to COMP), GM = 200us
- Current sense transresistance, $\mathrm{R}_{\mathrm{CS}}=0.4 \mathrm{~V} / \mathrm{A}$
- Feedback voltage, $\mathrm{V}_{\mathrm{FB}}=\mathrm{FB}=0.8 \mathrm{~V}$

Figure 7

Figure 8. CH6 Over Voltage Protection Method (V wLed $>50 \mu \mathrm{~A} \times \mathrm{R}+1 \mathrm{~V}$, protection happens)

The input parameters for CH 1 boost compensation are as follows:

- R1, the voltage divider resistor in between Vout and FB.
- V_{IN}, input voltage.
- Vout, desired output voltage
- Iout(MAX.), maximum output load
- Fosc, operating frequency
- L, inductance
- RESR, ESR (Equivalent Series Resistance) of Cout (ceramic output capacitor)
- TDRP(\%), Transient droop.

The results we will get for CH 1 boost compensation are as follows:

- R2, the voltage divider resistor in between FB and ground.
- C_{F}, feedforward capacitor in parallel with R1.
- R_{C}, compensation resistor on COMP pin.
- C_{c}, compensation capacitor in series with Rc and connect to ground.
- C_{P}, connect in between COMP pin and ground. (Can be ignored if $\mathrm{C}_{\mathrm{P}}<10 \mathrm{pF}$).
- Cout, output capacitance. This compensation is based on ceramic output capacitor.

The major steps for getting above results :

1. $\mathrm{R} 2=\mathrm{R} 1 \times\left(\frac{\mathrm{V}_{\mathrm{FB}}}{\left(\mathrm{VOUT}-\mathrm{VFB}_{\mathrm{FB}}\right)}\right)$
2. Find RHPZ(Right Hand Plan Zero) location.

RHPZ(Boost) $=$ RLOAD $x \frac{(1-D)^{2}}{2 \pi L}$, Where
RLOAD $=\frac{\text { VOUT }}{\operatorname{IOUT}(\text { MAX. })}, \mathrm{D}=$ Duty Cycle $=1-\frac{\mathrm{VIN}}{\text { Vout }}$
3. Set f_{c} (cross over frequency) sufficiently below RHPZ.

For example : $\mathrm{f}_{\mathrm{C}}=$ RHPZ/6
4. Get $\mathrm{Cc}=\left(\frac{\mathrm{R}_{\text {LOAD }}}{\mathrm{R}_{\mathrm{cs}}}\right) \times \frac{\mathrm{GM}}{2 \pi \mathrm{fc}} \times \frac{\mathrm{V}_{\mathrm{FB}}}{\mathrm{Vout}_{\text {out }}} \times(1-\mathrm{D})$
5. Select Rc based on the allowed transient droop.
$R_{C}=\operatorname{dlx}\left(\frac{1}{(1-D)}\right) \times \frac{R_{C S}}{G M \times d V_{F B}}$
, where $\mathrm{dl}=$ transient step, $\mathrm{dV}_{\mathrm{FB}}=\mathrm{T}_{\mathrm{DRP}}(\%) \times \mathrm{V}_{\mathrm{FB}}$
6. Get Cout $=\frac{R c \times C c}{\text { Rload }}$
7. Find ffz , zero and ffp , pole ratio of voltage divider with C_{F}.

$$
\text { ratio }=\frac{f f z}{f f p}=\frac{V_{o u t}}{V_{F B}}
$$

8. Get C_{F} by placing ffp on f_{C} and $f f z$ therefore on $\frac{f c}{\text { ratio }}$. $\mathrm{C}_{\mathrm{f}}=\frac{1}{2 \times \pi \times \mathrm{ffz} \times \mathrm{R} 1}$, where $\mathrm{ffz}=\frac{\mathrm{fc}}{\text { ratio }}$
9. Evaluate $\mathrm{C}_{\mathrm{P}} . \mathrm{C}_{\mathrm{P}}$ is for canceling the zero from $\mathrm{C}_{\text {out }}$ (ceramic output capacitor).
$C_{p}=$ Cout $\frac{R_{E S R}}{R_{c}} . C_{p}$ can be ignore if $C_{p}<10 \mathrm{pF}$.
Example : Set R1 $=470 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{FB}}=0.8 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OUT}(\mathrm{MAX} .)}=0.5 \mathrm{~A}, \mathrm{fosc}=500 \mathrm{kHz}, \mathrm{L}=4.7 \mathrm{uH}$,
$R_{E S R}=5 \mathrm{~m} \Omega$, and half-load transient droop is 5%.
Results:
10. $R 2=R 1 \frac{V_{F B}}{\text { Vout }-V_{F B}}=470 \mathrm{k} \frac{0.8}{3.3-0.8}=150 \mathrm{k} \Omega$
11. $\operatorname{RHPZ}($ Boost $)=\operatorname{RLOAD} \frac{(1-D)^{2}}{2 \pi L}=66.3 \mathrm{kHz}$, where RLOAD $=\frac{\text { Vout }}{\operatorname{IOUT}(\mathrm{MAX})}=6.6 \Omega,(1-\mathrm{D})=\frac{\text { VIN }}{\text { VOUT }}=0.54$
12. $\mathrm{fc}=\frac{\mathrm{RHPZ}}{6}=11 \mathrm{kHz}$
13. $\mathrm{C} c=\frac{\frac{R_{\text {ROAD }}}{R_{C S}} \mathrm{GM}}{2 \pi f \mathrm{c}} \times\left(\frac{\mathrm{V}_{\mathrm{FB}}}{\mathrm{VOUT}}\right) \times(1-\mathrm{D})=6.3 \mathrm{nF}$.

Choose 6.8nF.
Half-load transient means load from 0.25 A to 0.5 A transient. So, dl=0.5-0.25=0.25A
$d V_{F B}=T_{D R P}(\%) \times V_{F B}=5 \% \times 0.8=0.04 V$.
Thus,
5. $R c=\frac{d l\left(\frac{1}{(1-D)}\right) \times R c s}{G M \times d V_{F B}}=23 \mathrm{k} \Omega$
6. Cout $=\frac{R c \times C c}{R L O A D}=\frac{23 \mathrm{k} \times 6.8 \mathrm{n}}{6.6}=22 \mu \mathrm{~F}$.
7. ratio $=\frac{f f p}{f f z}=\frac{V_{O U T}}{V_{F B}}=\frac{3.3}{0.8}=4.1$
8. $C_{F}=\frac{1}{2 \pi \times f f z \times R 1}=126 p F$, where

$$
\mathrm{ffz}=\frac{\mathrm{fc}}{\text { ratio }}=\frac{11 \mathrm{k}}{4.1}=2.68 \mathrm{kHz}
$$

Choose $C_{F}=150 \mathrm{pF}$
9. $\mathrm{CP}=\frac{\text { COUT } \times \mathrm{RESR}}{\mathrm{Rc}}=\frac{22 \mu \mathrm{~F} \times 0.005}{23 \mathrm{k}}=4.8 \mathrm{pF}$, which is less than 10 pF . So, It can be ignored.

CH1 Sync-Buck (Select Pin = Low Logic) and CH2 Sync-Buck:

CH 1 sync-buck (select pin=low logic) and CH 2 sync-buck are converters employ current-mode control to simplify the control loop compensation. There is no RHPZ (Right Hand Plan Zero) in the buck topology but there is a high frequency pole $f_{H P}>=f_{\text {osc }} / \pi$. The f_{C} (cross over frequency) is chosen sufficient less than $f_{H P}$.
The fixed parameters for CH 1 and CH 2 buck compensation are as follows:

- Transconductance (from FB to COMP), GM $=200$ us
- Current sense transresistance, $\mathrm{R}_{\mathrm{CS}}=0.3 \mathrm{~V} / \mathrm{A}$
- Feedback voltage, $\mathrm{V}_{\mathrm{FB}}=\mathrm{FB}=0.8 \mathrm{~V}$

The input parameters for CH 1 and CH 2 buck compensation are as follows:

- R1, the voltage divider resistor in between Vout and FB.
- V_{IN}, input voltage.
- Vout, desired output voltage
- Iout(MAX.), maximum output load
- fosc, operating frequency
- L, inductance
- Resr, ESR (Equivalent Series Resistance) of Cout (ceramic output capacitor)
- TDRP(\%), Transient droop.

The results we will get for CH 1 boost compensation are as follows:

- R2, the voltage divider resistor in between FB and ground.
- C_{F}, feedforward capacitor in parallel with R 1 .
- R_{C}, compensation resistor on COMP pin.
- C_{C}, compensation capacitor in series with R_{C} and connect to ground
- C_{P}, connect in between COMP pin and ground. (Can be ignored if $\mathrm{C}_{\mathrm{P}}<10 \mathrm{pF}$)
- Cout, output capacitance. This compensation is based on ceramic output capacitor.

The major steps for getting above results :

1. $\mathrm{R} 2=\mathrm{R} 1 \frac{\mathrm{~V}_{\text {FB }}}{\mathrm{Vout}_{\text {- }} \mathrm{V}_{\text {FB }}}$
2. Set fc (cross over frequency) sufficiently below fosc.

For example : $\mathrm{fc}=\frac{\mathrm{fHP}}{4}$
3. $\mathrm{Cc}=\frac{\mathrm{R}_{\text {LOAD }}}{\text { Rcs }} \times \frac{\mathrm{GM}}{2 \pi \mathrm{fc}} \times \frac{\mathrm{V}_{\mathrm{FB}}}{\text { Vout }}$
4. $R c=\frac{d l \times R c s}{G M \times d V F B}$, where $d l=$ transient step,
$d V F B=\operatorname{TDRP}(\%) \times V F B$
5. Get Cout $=\frac{\text { Rc } \times C c}{\text { RLOAD }}$
6. Find ffz, zero and ffp, pole ratio of voltage divider with C_{F}.
ratio $=\frac{\mathrm{ffp}}{\mathrm{ffz}}=\frac{\text { Vout }}{V_{\mathrm{FB}}}$
7. Get C_{F} by placing ffp on f_{C} and $f f z$ therefore on $\frac{f c}{\text { ratio }}$. $C_{F}=\frac{1}{2 \pi \times \mathrm{ff}_{\mathrm{Z}} \times \mathrm{R} 1}$, where $\mathrm{ff} \mathrm{Z}=\frac{\mathrm{fC}}{\text { ratio }}$.
8. Evaluate $\mathrm{C}_{\mathrm{p}} . \mathrm{C}_{\text {p }}$ is for canceling the zero from Cout (ceramic output capacitor).
$\mathrm{C}_{\mathrm{p}}=\frac{\text { Cout } \times \mathrm{ReSR}_{\mathrm{E}}}{\mathrm{Rc}_{\mathrm{c}}}$. Cp can be ignore if $\mathrm{Cp}<10 \mathrm{pF}$.
Example : Set R1 $=470 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=1.8 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{FB}}=0.8 \mathrm{~V}$, $\operatorname{lout(MAX.)}=0.5 \mathrm{~A}, \mathrm{f}_{\mathrm{OSC}}=500 \mathrm{kHz}, \mathrm{L}=4.7 \mathrm{uH}$,
$R_{E S R}=5 \mathrm{~m} \Omega$, and half-load transient droop is 5%.

Results :

1. $\mathrm{R} 2=\mathrm{R} 1 \times \frac{\mathrm{V}_{\mathrm{FB}}}{\mathrm{VOUT}^{-V_{F B}}}=470 \mathrm{k} \times \frac{0.8}{1.8-0.8}=376 \mathrm{k} \Omega$
2. $\mathrm{fc}=\frac{\mathrm{fHP}}{4}=\frac{\mathrm{fosc}}{4 \pi}=40 \mathrm{kHz}$
3. $\mathrm{C} c=\frac{R_{\text {LOAD }}}{\text { Rcs }} \times \frac{\mathrm{GM}}{2 \pi f \mathrm{c}} \times \frac{\mathrm{V}_{\text {FB }}}{\text { Vout }}=4.25 \mathrm{nF}$, where

RLOAD $=\frac{\text { Vout }}{\operatorname{lOUT}(\text { MAX. })}=3.6 \Omega$

Choose 4.7nF.
Half-load transient means load from 0.25 A to 0.5 A transient. So, dl = $0.5-0.25=0.25 \mathrm{~A}$
$\mathrm{d} \mathrm{V}_{\mathrm{FB}}=\mathrm{T}_{\mathrm{DRP}}(\%) \times \mathrm{V}_{\mathrm{FB}}=5 \% \times 0.8=0.04 \mathrm{~V}$.
Thus,
4. $\mathrm{Rc}=\mathrm{dl} \frac{\mathrm{Rcs}}{\mathrm{GMxdVFB}}=9.4 \mathrm{k} \Omega$, choose $10 \mathrm{k} \Omega$.
5. Cout $=\frac{R c \times C c}{\text { RLOAD }}=\frac{10 \mathrm{k} \times 3.9 \mathrm{nF}}{3.6}=10.8 \mu \mathrm{~F}$. Choose $10 \mu \mathrm{~F}$.
6. ratio $=\frac{\mathrm{ffp}}{f f z}=\frac{\mathrm{Vout}}{V_{F B}}=\frac{1.8}{0.8}=2.25$
7. $C_{F}=\frac{1}{2 \pi \times f f z \times R 1}=15.2 p F$, where
$\mathrm{ffz}=\frac{\mathrm{fC}}{\text { ratio }}=\frac{50 \mathrm{k}}{2.25}=22.2 \mathrm{kHz}$
Choose $\mathrm{C}_{\mathrm{F}}=22 \mathrm{pF}$
8. $\mathrm{C} P=\frac{\text { Cout } \times \operatorname{ReSR}}{\mathrm{Rc}}=\frac{10 \mu \times 0.005}{10 \mathrm{k}}=5 \mathrm{pF}$, which is less than 10 pF. So, It can be ignored.

CH3 Syn Boost Controller with External MOSFET :

CH3 boost controller driving external logic level MOSFET employs current-mode control to simplify the control loop compensation. There is a RHPZ (Right Hand Plan Zero) appeared in the loop-gain frequency response when a boost converter operates with continuous inductor current (typically the case), we also call it works in CCM (Continuous Current Mode). For stability, cross over frequency (fc_{c}), unity gain frequency, must lower than this RHPZ frequency.

The fixed parameters for CH 3 boost compensation are as follows :

- Transconductance (from FB to COMP), GM $=200$ us
- Feedback voltage, $\mathrm{V}_{\mathrm{FB}}=\mathrm{FB}=0.8 \mathrm{~V}$

The input parameters for boost compensation are as follows :

- $R_{\mathrm{DS}(O N)}$, the NMOSFET $\mathrm{R}_{\mathrm{DS}(O N)}$, which is use to find transresistance, Rcs.
- R1, the voltage divider resistor in between Vout and FB.
- V_{IN}, input voltage.
- Vout, desired output voltage
- Iout(MAX.), maximum output load
- Fosc, operating frequency
- L, inductance
- RESR, ESR (Equivalent Series Resistance) of Cout (ceramic output capacitor)
- TDRP(\%), Transient droop.

The results we will get for boost compensation are as follows :

- R R_{cs}, the transresistance of current sense.
- R2, the voltage divider resistor in between FB and ground.
- C_{F}, feedforward capacitor in parallel with R1.
- R_{c}, compensation resistor on COMP pin.
- C_{c}, compensation capacitor in series with R_{c} and connect to ground
- C_{p}, connect in between COMP pin and ground. (Can be ignored if $\mathrm{C}_{\mathrm{P}}<10 \mathrm{pF}$)
- Cout, output capacitance. This compensation is based on ceramic output capacitor.

The major steps for getting above results :

1. $R_{C S}=2 \times R_{D S(O N)}$

The rest of the steps are the same as sync-boost.

CH4 Asyn-Boost Controller with External MOSFET

CH 4 is an asyn-boost controller driving external logic level N type MOSFET, which employs voltage mode control to regulate the output voltage. Compensation depends on designing the loading range working in discontinuous or continuous inductor current mode. (DCM or CCM).

Asyn-Boost in DCM :

We call it DCM because inductor current falls to zero on each switch cycle. The benefit of designing in DCM is the simple loop compensation, which has no RHPZ (Right Hand Plan Zero) and conjugate double pole in the frequency domain to worry about, but has a single load pole instead. However, the output ripple and efficiency are worse than in CCM (Continuous Inductor Current). If the loading is around tens of mA , it is not bad to design in DCM with less impact on the output ripple and efficiency, but gain more easy to stabilize the control loop.

The fixed parameters for CH4 asyn-boost in DCM compensation are as follows:

- Transconductance (from FB to COMP), GM = 200us.
- Internal voltage ramp to decide duty cycle, $\mathrm{V}_{\mathrm{P}}=1 \mathrm{~V}$.
- Feedback voltage, $\mathrm{V}_{\mathrm{FB}}=\mathrm{FB}=1 \mathrm{~V}$

Figure 9

The input parameters for CH4 asyn-boost in DCM compensation are as follows :

- R1, the voltage divider resistor in between $\mathrm{V}_{\text {out }}$ and FB.
- V_{IN}, input voltage.
- Vout, desired output voltage
- Iout(MAX.), maximum output load
- fosc, operating frequency
- L, inductance
- Cout, output capacitance. This compensation is based on ceramic output capacitor.
- RESR, ESR (Equivalent Series Resistance) of Cout (ceramic output capacitor)

The results we will get for CH4 asyn-boost in DCM compensation are as follows :

- R2, the voltage divider resistor in between FB and ground.
- C_{F}, feedforward capacitor in parallel with R1.
- R_{C}, compensation resistor on COMP pin.
- C_{C}, compensation capacitor in series with R_{C} and connect to ground
- C_{P}, connect in between COMP pin and ground. (Can be ignored if $C_{P}<10 \mathrm{pF}$)

The major steps for getting above results :

1. $R 2=R 1 \times \frac{V_{F B}}{\text { Vout }-V_{F B}}$
2. Select suitable inductor to ensure lout(Min.) works in DCM, which is let inductor current falls to zero on each switch cycle.

$$
L<\frac{\operatorname{VIN} \times D \times(1-D)}{2 \times \operatorname{lout}(M A X .) \times \text { fosc }}
$$

3. Set f_{C} sufficient below fosc.

For example: $\mathrm{fc}=\frac{\mathrm{fosc}}{10}$ or lower
4. Find the load pole : $\mathrm{fLP}=\frac{2 \times \mathrm{M}-1}{2 \pi \times(\mathrm{M}-1) \times \text { RLOAD } \times \text { Cout }}$, where $M=\frac{\text { VOUT }}{\text { VIN }^{\prime}}$, RLOAD $=\frac{\text { Vout }}{\text { IOUT(MAX.) }}$.
5. Get Rc $=\frac{\frac{f c}{f L P} \times V_{P}}{G M \times G_{\text {dod }}}$, where $G_{d o d}=2 \times \frac{\text { Vout }}{D} \times \frac{M-1}{2 \times M-1}$,
which is duty to Vout transfer function.
$\mathrm{D}=$ duty cycle $=1-\frac{\mathrm{VIN}}{\text { Vout }}$
6. Get Cc $=$ Cout $x \frac{\text { Rload }}{\text { Rc }}$
by letting comp zero = load pole.
7. Find ffz , zero and ffp , pole ratio of voltage divider with C_{F}.
ratio $=\frac{\mathrm{ffp}}{\mathrm{ffz}}=\frac{\text { Vout }^{V_{F B}}}{\text { VB }}$
8. Get C_{F} by placing ffp on f_{C} and $f f z$ therefore on $\frac{f c}{\text { ratio }}$.
$\mathrm{C}_{\mathrm{F}}=\frac{1}{2 \pi \times \mathrm{ff}_{\mathrm{Z} \times \mathrm{R} 1}}$, where $\mathrm{ff} \mathrm{Z}=\frac{\mathrm{fC}}{\text { ratio }}$.
9. Evaluate $\mathrm{C}_{\mathrm{p}} . \mathrm{C}_{\mathrm{p}}$ is for canceling the zero from $\mathrm{C}_{\text {out }}$ (ceramic output capacitor).
$C P=$ Cout $x \frac{R_{\text {ESR }}}{R c}$. Cp can be ignore if $C p<10 p F$.

Asyn-boost in CCM :

We call it CCM because inductor current is always continuous in operation. The benefit of designing in CCM is lower Vout and inductor current ripple and higher efficiency from the lower coil loss, but with the expense of larger inductor size and cost and the control loop comes with a RHPZ (Right Hand Plan Zero) and a conjugate double pole in the frequency domain to worry about.

The fixed parameters for CH 4 asyn-boost in CCM compensation are as follows :

- Transconductance (from FB to COMP), GM = 200us
- Internal voltage ramp to decide duty cycle, $\mathrm{V}_{\mathrm{P}}=1 \mathrm{~V}$
- Feedback voltage, $\mathrm{V}_{\mathrm{FB}}=\mathrm{FB}=1 \mathrm{~V}$

The input parameters for CH 4 asyn-boost in CCM compensation are as follows:

- R1, the voltage divider resistor in between Vout and FB.
- V_{IN}, input voltage.
- Vout, desired output voltage
- Iout(MAX.), maximum output load
- lout(min.), minimum output laod
- $f_{\text {Osc }}$, operating frequency
- L, inductance
- Cout, output capacitance. This compensation is based on ceramic output capacitor.
- RESR, ESR (Equivalent Series Resistance) of Cout (ceramic output capacitor)

The results we will get for CH 4 asyn-boost in CCM compensation are as follows:

- R2, the voltage divider resistor in between FB and ground.
- C_{F}, feedforward capacitor in parallel with R1.
- Rc, compensation resistor on COMP pin.
- C_{c}, compensation capacitor in series with R_{c} and connect to ground
- Cr_{p}, connect in between COMP pin and ground. (Can be ignored if $\mathrm{C}_{\mathrm{P}}<10 \mathrm{pF}$)

The major steps for getting above results :

1. $R 2=R 1 x \frac{V_{F B}}{V_{\text {OUT }}-V_{F B}}$
2. Select suitable inductor to ensure lout(Min.) works in CCM,
$L>\frac{\operatorname{Vin} \times D \times(1-D)}{2 \times \operatorname{lout}(\operatorname{Min} .) \times \text { fosc }}$
3. Find RHPZ(Right Hand Plan Zero) location.

RHPZ(Boost) $=$ RLOAD $\frac{(1-D)^{2}}{2 \pi L}$, where
RLOAD $=\frac{\text { Vout }}{\operatorname{IOUT}(\mathrm{MAX})}, \mathrm{D}=$ duty cycle $=1-\frac{\mathrm{VIN}}{\text { VOUT }}$
4. Set f_{C} (cross over frequency) sufficiently below RHPZ. For example : $\mathrm{fc}=\frac{\text { RHPZ }}{6}$ or lower.
5. Find the load pole : $\mathrm{fLP}=\frac{2 \times \mathrm{M}-1}{2 \pi \times(\mathrm{M}-1) \times \text { RLOAD } \times \text { Cout }}$, where $\mathrm{M}=\frac{\text { Vout }}{\mathrm{VIN}_{\text {IN }}}$, RLOAD $=\frac{\text { Vout }}{\text { IOUT(MAX.) }}$.
6. Get $R c=\frac{\frac{f c}{f L P} \times V_{P}}{G M \times G_{d o c}}$, where $G_{d o c}=\frac{V_{I N}}{(1-D)^{2}}$, which is duty to $V_{\text {OUt }}$ transfer function.
$\mathrm{D}=$ duty cycle $=1-\frac{\mathrm{VIN}}{\text { Vout }}$.
7. Find $f_{c d p}=\frac{1-D}{2 \pi \times(\mathrm{LC})^{2}}$,
which is the conjugate double pole from LC filter.
8. $\mathrm{Cc}=\frac{1}{2 \pi \times \mathrm{fcdp} \times \mathrm{Rc}}$ to cancel one of the double pole.
9. Find C_{f} by placing its zero on $f_{c d p}$ to cancel another double pole.
$C_{F}=\frac{1}{2 \pi \times f_{c d p} \times R 1}$.
10.Evaluate $C_{P} . C_{P}$ is for canceling the zero from $C_{\text {out }}$ (ceramic output capacitor).
$C p=$ Cout $x \frac{R E S R}{R c}$. Cp can be ignore if $C p<10 \mathrm{pF}$.

CH5 Asyn-Inverter Controller with External MOSFET

CH 5 is an asyn-inverter controller driving external logic level P type MOSFET, which employs voltage mode control to regulate the output voltage. Compensation depends on designing the loading range working in discontinuous or continuous inductor current mode. (DCM or CCM).

Asyn-Inverter in DCM :

We call it DCM because inductor current falls to zero on each switch cycle. The benefit of designing in DCM is the simple loop compensation, which has no RHPZ (Right Hand Plan Zero) and conjugate double pole in the frequency domain to worry about, but has a single load pole instead. However, the output ripple and efficiency are worse than in CCM (Continuous Inductor Current). If the loading is around tens of mA , it is not bad to design in DCM with less impact on the output ripple and efficiency, but gain more easy to stabilize the control loop.

The fixed parameters for CH 5 asyn-inverter in DCM compensation are as follows:

- Transconductance (from FB to COMP), GM = 200us
- Internal voltage ramp to decide duty cycle, $\mathrm{V}_{\mathrm{P}}=1 \mathrm{~V}$
- Feedback voltage, $\mathrm{V}_{\mathrm{FB}}=\mathrm{FB}=0 \mathrm{~V}$
- Reference voltage, $\mathrm{V}_{\mathrm{REF}}=1 \mathrm{~V}$

Figure 10

The input parameters for CH5 asyn-inverter in DCM compensation are as follows :

- R1, the voltage divider resistor in between $\mathrm{V}_{\text {out }}$ and FB.
- VIN, input voltage.
- Vout, desired output voltage
- Iout(MAX.), maximum output load
- fosc, operating frequency
- L, inductance
- Cout, output capacitance. This compensation is based on ceramic output capacitor.
- Resr, ESR (Equivalent Series Resistance) of Cout (ceramic output capacitor)

The results we will get for CH5 asyn-inverter in DCM compensation are as follows :

- R2, the voltage divider resistor in between FB and $V_{\text {REF }}$.
- C_{F}, feedforward capacitor in parallel with R1.
- R_{C}, compensation resistor on COMP pin.
- C_{C}, compensation capacitor in series with R_{C} and connect to ground
- C_{P}, connect in between COMP pin and ground. (Can be ignored if $C_{P}<10 \mathrm{pF}$)

The major steps for getting above results :

1. $\mathrm{R} 2=\mathrm{R} 1 \times \frac{\mathrm{V}_{\text {REF }}-\mathrm{V}_{\mathrm{FB}}}{\mathrm{V}_{\mathrm{FB}}-\mathrm{Vout}^{2}}$. If $\mathrm{R} 1=1 \mathrm{M} \Omega$ and $\mathrm{Vout}=(-8) \mathrm{V}$ then $R 2=1 \mathrm{M} \times \frac{1-0}{0-(-8)}=125 \mathrm{k} \Omega$
2. Select suitable inductor to ensure lout(min.) works in DCM, which is let inductor current falls to zero on each switch cycle.

$$
L<\frac{\operatorname{Vin} x(1-D)}{2 \times \operatorname{lout}(M A X .) \times \text { fosc }}
$$

3. Set f_{C} sufficient below fosc

For example: $\mathrm{fc}=\frac{\mathrm{fosc}}{10}$ or lower
4. Find the load pole : $f \mathrm{fP}=\frac{2}{2 \pi \times \text { RLOAD } \times \text { Cout }}$, where RLOAD $=\frac{\text { Vout }}{\operatorname{lout}(\text { MAX. })}$.
5. Get $R c=\frac{\frac{f C}{f L P} \times V_{P}}{G M \times G_{\text {dod }}}$, where $G_{\text {dod }}=\frac{V \text { out }}{D}$, which is duty to Vout transfer function.
$\mathrm{D}=$ duty cycle $=\frac{\mathrm{abs}(\text { VOUT })}{\mathrm{VIN}+\mathrm{abs}(\text { Vout })}$.
6. Get $\mathrm{Cc}=$ Cout $x \frac{\text { RLOAD }}{\text { Rc }}$ by letting comp zero = load pole.
7. Find ffz, zero and ffp, pole ratio of voltage divider with C_{F}.

$$
\text { ratio }=\frac{\mathrm{ffp}}{\mathrm{ffz}}=\frac{\mathrm{abs}(\text { Vout })+\mathrm{V}_{\text {REF }}}{\text { VREF }}
$$

8. Get C_{F} by placing ffp on f_{C} and $f f z$ therefore on $\frac{f c}{\text { ratio }}$. $C_{F}=\frac{1}{2 \pi \times f f Z \times R 1}$, where $\mathrm{ff} Z=\frac{\mathrm{fC}}{\text { ratio }}$.
9. Evaluate $C_{P} . C_{P}$ is for canceling the zero from $C_{\text {out }}$ (ceramic output capacitor).
$C P=$ Cout $x \frac{R e s R}{R c} . C p$ can be ignore if $C p<10 p F$.

Asyn-Inverter in CCM :

We call it CCM because inductor current is always continuous in operation. The benefit of designing in CCM is lower Vout and inductor current ripple and higher efficiency from the lower coil loss, but with the expense of larger inductor size and cost and the control loop comes with a RHPZ (Right Hand Plan Zero) and a conjugate double pole in the frequency domain to worry about.

The fixed parameters for CH 5 asyn-inverter in CCM compensation are as follows :

- Transconductance (from FB to COMP), GM = 200us
- Internal voltage ramp to decide duty cycle, $\mathrm{V}_{\mathrm{P}}=1 \mathrm{~V}$
- Feedback voltage, $\mathrm{V}_{\mathrm{FB}}=\mathrm{FB}=0 \mathrm{~V}$
- Reference voltage, $\mathrm{V}_{\mathrm{REF}}=1 \mathrm{~V}$

The input parameters for CH 5 asyn-inverter in CCM compensation are as follows :

- R1, the voltage divider resistor in between Vout and FB.
- V_{IN}, input voltage.
- Vout, desired output voltage
- Iout(MAX.), maximum output load
- Iout(Min.), minimum output laod
- fosc, operating frequency
- L, inductance
- Cout, output capacitance. This compensation is based on ceramic output capacitor.
- RESR, ESR (Equivalent Series Resistance) of Cout (ceramic output capacitor)
The results we will get for CH5 asyn-inverter in CCM compensation are as follows :
- R2, the voltage divider resistor in between FB and $\mathrm{V}_{\text {REF }}$.
- C_{F}, feedforward capacitor in parallel with R1.
- Rc, compensation resistor on COMP pin.
- C_{c}, compensation capacitor in series with R_{C} and connect to ground
- C_{p}, connect in between COMP pin and ground. (Can be ignored if $C_{P}<10 \mathrm{pF}$)

The major steps for getting above results :

1. $R 2=R 1 x \frac{V_{\text {REF }}-V_{F B}}{V_{F B}-V_{\text {OUT }}}$. If $R 1=1 \mathrm{M} \Omega$ and $\mathrm{V}_{\text {out }}=(-8) \mathrm{V}$ then $R 2=1 \mathrm{M} \times \frac{1-0}{0-(-8)}=125 \mathrm{k} \Omega$
2. Select suitable inductor to ensure lout(MIN.) works in CCM,
$\mathrm{L}<\frac{\operatorname{Vin} \mathrm{x}(1-\mathrm{D})}{2 \times \operatorname{lout}(\mathrm{MIN} .) \mathrm{x} \text { fosc }}$
3. Find RHPZ(Right Hand Plan Zero) location.
RHPZ (Boost) $=$ RLoAd $\frac{\frac{(1-D)^{2}}{D}}{2 \pi L}$, where
RLOAD $=\frac{\text { VOUT }}{\operatorname{lout}(\text { MAX })}, \mathrm{D}=$ duty cycle $=\frac{\mathrm{abs}(\text { Vout })}{\mathrm{VIN}+\mathrm{abs}(\text { Vout })}$
4. Set f_{C} (cross over frequency) sufficiently below RHPZ.

For example: $\mathrm{fc}=\frac{\mathrm{RHPZ}}{6}$ or lower
5. Find the load pole : $\mathrm{fLP}=\frac{2}{2 \pi \times \text { RLOAD } \times \text { Cout }}$, where RLOAD $=\frac{\operatorname{abs}(\text { VOUT })}{\operatorname{lout}(\text { MAX. })}$.
6. Get Rc $=\frac{\frac{f c}{f L P} \times V_{P}}{G M \times G_{d o c}}$, where $G_{d o c}=\frac{V I N}{(1-D)^{2}}$, which is duty to $V_{\text {out }}$ transfer function.

$$
\mathrm{D}=\text { duty cycle }=\frac{\mathrm{abs}(\text { VOUT })}{\mathrm{VIN}+\mathrm{abs}(\mathrm{VOUT})} \text { Vout }
$$

7. Find $f_{c d p}=\frac{1-D}{2 \pi \times(L C)^{2}}$,
which is the conjugate double pole from LC filter.
8. $\mathrm{C} c=\frac{1}{2 \pi \times f_{c d p} \times R c}$ to cancel one of the double pole.
9. Find C_{f} by placing its zero on fcdp to cancel another double pole.
$C_{F}=\frac{1}{2 \pi \times f_{c d p} \times R 1}$.
10.Evaluate $C_{P} . C_{P}$ is for canceling the zero from Cout (ceramic output capacitor).
$C_{p}=$ Cout $x \frac{R_{E S R}}{R_{c}}$. C_{p} can be ignore if $C_{P}<10 \mathrm{pF}$.

PCB Layout Considerations

- The feedback netwok should be very close to the FB pin.
- The compensation network should be very close to the COMP pin and avoid through VIA.
- For CH3 current sense, CS should be close to the drain site of external NMOS.
- Keep high current path as short as possible.

Outline Dimension

Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	0.800	1.000	0.031	0.039				
A1	0.000	0.050	0.000	0.002				
A3	0.175	0.250	0.007	0.010				
b	0.180	0.300	0.007	0.012				
D	5.950	6.050	0.234	0.238				
D2	4.000	4.750	0.157	0.187				
E	5.950	6.050	0.234	0.238				
E2	4.000	4.750	0.157	0.187				
e	0.500							0.020
L	0.350	0.450	0.014	0.018				

V-Type 40L QRN 6x6 Package

Richtek Technology Corporation

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)
8F, No. 137, Lane 235, Paochiao Road, Hsintien City
Taipei County, Taiwan, R.O.C.
Tel: (8862)89191466 Fax: (8862)89191465
Email: marketing@richtek.com

