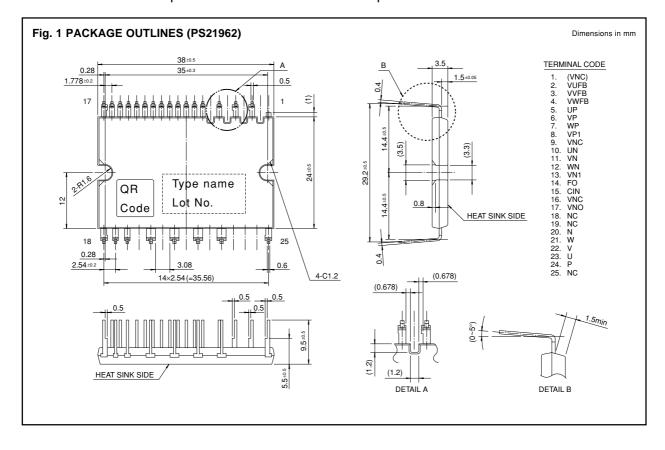
TRANSFER-MOLD TYPE INSULATED TYPE

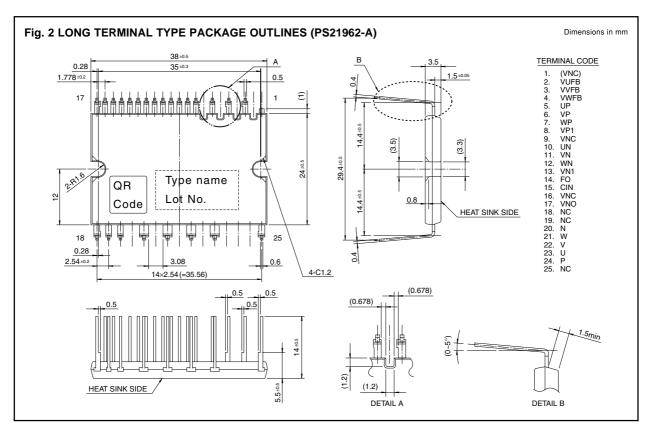
PS21962-A

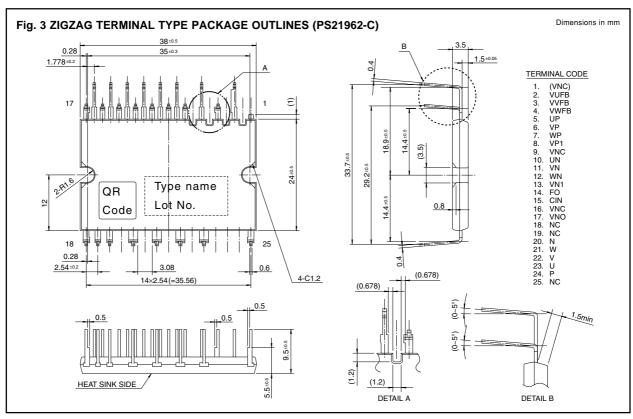
INTEGRATED POWER FUNCTIONS

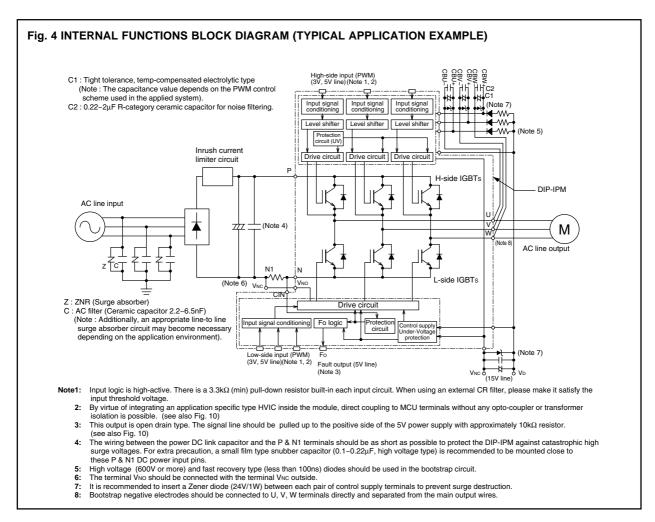

600V/5A low-loss 5^{th} generation IGBT inverter bridge for three phase DC-to-AC power conversion

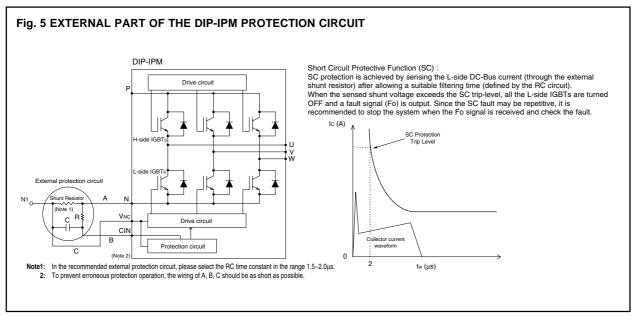
INTEGRATED DRIVE, PROTECTION AND SYSTEM CONTROL FUNCTIONS

- For upper-leg IGBTs: Drive circuit, High voltage isolated high-speed level shifting, Control supply under-voltage (UV) protection.
- For lower-leg IGBTs: Drive circuit, Control supply under-voltage protection (UV), Short circuit protection (SC).
- Fault signaling: Corresponding to an SC fault (Lower-leg IGBT) or a UV fault (Lower-side supply).
- Input interface: 3V, 5V line (High Active).


APPLICATION


AC100V~200V three-phase inverter drive for small power motor control.




TRANSFER-MOLD TYPE INSULATED TYPE

TRANSFER-MOLD TYPE INSULATED TYPE

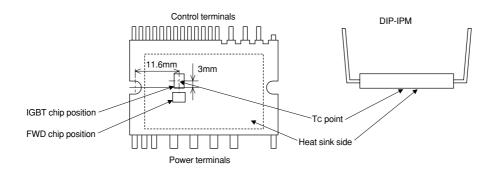
TRANSFER-MOLD TYPE INSULATED TYPE

MAXIMUM RATINGS ($T_j = 25^{\circ}C$, unless otherwise noted)

INVERTER PART

Symbol	Parameter	Condition	Ratings	Unit
Vcc	Supply voltage	Applied between P-N	450	V
VCC(surge)	Supply voltage (surge)	Applied between P-N	500	V
VCES	Collector-emitter voltage		600	V
±lc	Each IGBT collector current	Tc = 25°C	5	Α
±ICP	Each IGBT collector current (peak)	Tc = 25°C, less than 1ms	10	Α
Pc	Collector dissipation	Tc = 25°C, per 1 chip	21.3	W
Tj	Junction temperature	(Note 1)	-20~+125	°C

Note 1: The maximum junction temperature rating of the power chips integrated within the DIP-IPM is 150° C (@ Tc $\leq 100^{\circ}$ C). However, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to $T_{j(ave)} \leq 125^{\circ}$ C (@ Tc $\leq 100^{\circ}$ C).


CONTROL (PROTECTION) PART

Symbol	Parameter	Condition	Ratings	Unit
VD	Control supply voltage	Applied between VP1-VNC, VN1-VNC	20	V
VDB	Control supply voltage	Applied between VUFB-U, VVFB-V, VWFB-W 20		V
VIN	Input voltage	Applied between UP, VP, WP, UN, VN, WN-VNC	-0.5~VD+0.5	V
VFO	Fault output supply voltage	Applied between Fo-VNC	-0.5~VD+0.5	V
IFO	Fault output current	Sink current at Fo terminal	1	mA
Vsc	Current sensing input voltage	Applied between CIN-VNC	-0.5~VD+0.5	V

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Self protection supply voltage limit (short circuit protection capability)	$VD = 13.5$ ~16.5V, Inverter part $T_j = 125$ °C, non-repetitive, less than 2μs	400	V
Tc	Module case operation temperature	(Note 2)	− 20~+100	°C
Tstg	Storage temperature		− 40~+125	°C
Viso	Isolation voltage	60Hz, Sinusoidal, AC 1 minutes, All connected pins to heat-sink plate	1500	Vrms

Note 2: To measurement point

TRANSFER-MOLD TYPE **INSULATED TYPE**

THERMAL RESISTANCE

Symbol Parameter	Davamatav	ter Condition		Limits		
	Parameter	Condition	Min.	Тур.	Max.	Unit
Rth(j-c)Q	Junction to case thermal	Inverter IGBT part (per 1/6 module)		_	4.7	°C/W
Rth(j-c)F	resistance (Note 3)	Inverter FWD part (per 1/6 module)		_	5.4	°C/W

Note 3: Grease with good thermal conductivity should be applied evenly with about +100µm~+200µm on the contacting surface of DIP-IPM

and heat-sink. The contacting strate of DII-IIM case and heat sink (Rth(c-f)) is determined by the thickness and the thermal conductivity of the applied grease. For reference, Rth(c-f) (per 1/6 module) is about 0.3° C/W when the grease thickness is $20\mu m$ and the thermal conductivity is $1.0W/m \cdot k$.

ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)

INVERTER PART

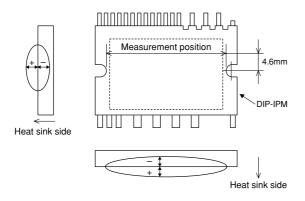
Cumple of	Davamatav	Condition		Limits			Unit	
Symbol	Parameter			Min.	Тур.	Max.	Unit	
VCE(sat)	Collector-emitter saturation	VD = VDB = 15V	Ic = 5A, Tj = 25°C	_	1.70	2.20		
VCE(Sat)	voltage	VIN = 5V	Ic = 5A, Tj = 125°C	_	1.80	2.30	V	
VEC	FWD forward voltage	Tj = 25°C, -IC = 5A, VIN = 0V		_	1.70	2.20	V	
ton			0.50	1.00	1.60	μs		
trr		VCC = 300V, VD = VDB = 15V IC = 5A, Tj = 125°C, VIN = 0 \leftrightarrow 5V		_	0.30	_	μs	
tc(on)	Switching times			_	0.30	0.50	μs	
toff		Inductive load (upper-lov	Inductive load (upper-lower arm)		1.40	2.00	μs	
tc(off)				_	0.50	0.80	μs	
ICES	Collector-emitter cut-off		Tj = 25°C	_	_	1	mA	
1020	current	VCE = VCES	Tj = 125°C	_	_	10	IIIA	

CONTROL (PROTECTION) PART

Cumple al	Davamatav	Condition				Limits		Unit
Symbol	Parameter		Col	ndition	Min.	Тур.	Max.	Offit
		VD = VDB = 15V Total of VP1-VNC, VN1-VNC		_	_	2.80	mA	
ID	Circuit current	VIN = 5V	VUFB-	U, Vvfb-V, Vwfb-W	_	_	0.55	mA
ם ו	Circuit current	VD = VDB = 15V	Total of	of VP1-VNC, VN1-VNC	_	_	2.80	mA
		VIN = 0V	VUFB-	U, VVFB-V, VWFB-W	_	_	0.55	mA
VFOH	Fo output voltage	Vsc = 0V, Fo terminal pull-up to 5V by 10kΩ			4.9	_	_	V
VFOL	FO output voltage	VSC = 1V, IFO = 1mA			_	_	0.95	V
VSC(ref)	Short circuit trip level	$T_j = 25^{\circ}C, VD = 15V$ (Note 4)			0.43	0.48	0.53	V
lin	Input current	VIN = 5V		0.70	1.00	1.50	mA	
UVDBt			Trip level	Trip level	10.0	_	12.0	V
UVDBr	Control supply under-voltage	 T _i ≤ 125°C		Reset level	10.5	_	12.5	V
UVDt	protection	1] ≤ 125 C	Trip level	10.3	_	12.5	V	
UVDr				Reset level	10.8	_	13.0	V
tFO	Fault output pulse width			(Note 5)	20	_	_	μs
Vth(on)	ON threshold voltage				_	2.1	2.6	V
Vth(off)	OFF threshold voltage	Applied between LID V/D M/D LIN V/N M/N V/NO		0.8	1.3	_	V	
Vth(hys)	ON/OFF threshold hysteresis voltage	Applied between UP, VP, WP, UN, VN, WN-VNC			0.35	0.65	_	٧

Note 4: Short circuit protection is functioning only for the lower-arms. Please select the external shunt resistance such that the SC trip-level is less than 1.7 times of the current rating.

5: Fault signal is asserted corresponding to a short circuit or lower side control supply under-voltage failure.


TRANSFER-MOLD TYPE INSULATED TYPE

MECHANICAL CHARACTERISTICS AND RATINGS

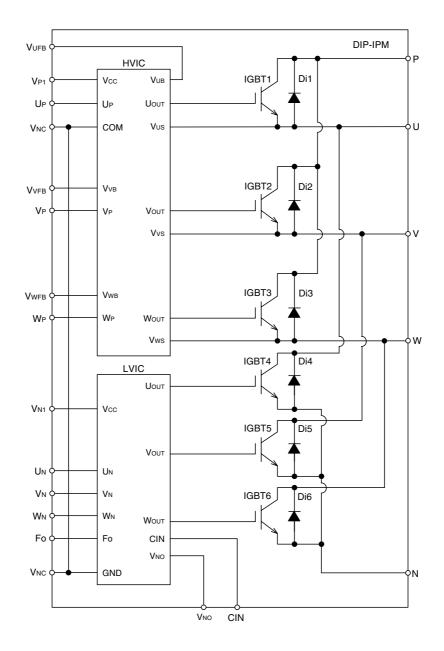
Dovometer	Condition		Limits			Limit
Parameter	Con	Min.	Тур.	Max.	Unit	
Mounting torque	Mounting screw : M3 (Note 6)	Becommended : 0.69 N·m		_	0.78	N·m
Weight			_	10	_	g
Heat-sink flatness		(Note 7)	- 50	_	100	μm

Note 6: Plain washers (ISO 7089~7094) are recommended.

Note 7: Flatness measurement position

RECOMMENDED OPERATION CONDITIONS

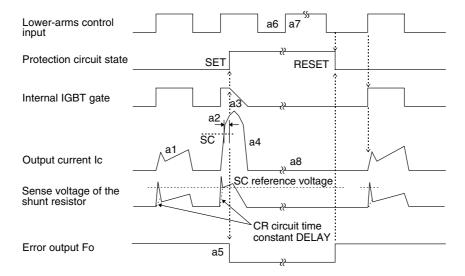
Cumphal	vmbol Parameter Condition				Limits		Unit
Symbol Parameter		Condition		Min.	Тур.	Max.	Unit
Vcc	Supply voltage	Applied between P-N			300	400	V
VD	Control supply voltage	Applied between VP1-VNC, VN1-VNC		13.5	15.0	16.5	V
VDB	Control supply voltage	Applied between VUFB-U, VVFB-V, VWFB-	W	13.0	15.0	18.5	V
ΔV D, ΔV DB	Control supply variation				_	1	V/µs
tdead	Arm shoot-through blocking time	For each input signal, Tc ≤ 100°C		1.5	_	_	μs
l.		VCC = 300V, VD = VDB = 15V,	fPWM = 5kHz	_	_	2.5	
lo	Output r.m.s. current	$ \begin{array}{l} P.F = 0.8, \mbox{ sinusoidal PWM,} \\ T_{j} \leq 125^{\circ}\mbox{C, } T\mbox{C} \leq 100^{\circ}\mbox{C} \end{array} \tag{Note 8} $	fPWM = 15kHz		_	1.5	Arms
PWIN(on)	Allowable minimum input	·		0.5	_	_	
PWIN(off)	pulse width		0.5	_	_	μs	
VNC	VNC voltage variation	Between VNC-N (including surge)		- 5.0	_	5.0	V


Note 8: The allowable r.m.s. current value depends on the actual application conditions.

^{9:} IPM might not make response if the input signal pulse width is less than the recommended minimum value.

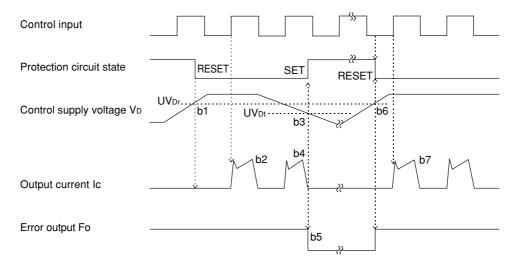
TRANSFER-MOLD TYPE INSULATED TYPE

Fig. 6 THE DIP-IPM INTERNAL CIRCUIT



TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 7 TIMING CHART OF THE DIP-IPM PROTECTIVE FUNCTIONS


[A] Short-Circuit Protection (Lower-arms only with the external shunt resistor and CR filter)

- a1. Normal operation: IGBT ON and carrying current.
- a2. Short circuit detection (SC trigger).
- a3. IGBT gate hard interruption.
- a4. IGBT turns OFF.
- a5. Fo timer starts (tFO(min) = 20μ s). a6. Input "L" : IGBT OFF.
- a7. Input "H"
- a8. IGBT OFF in spite of input "H".

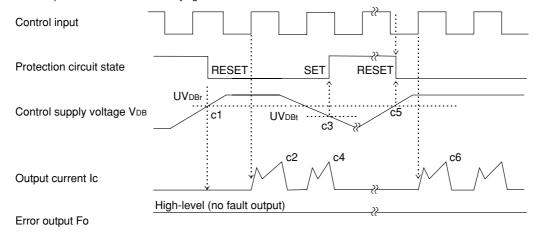
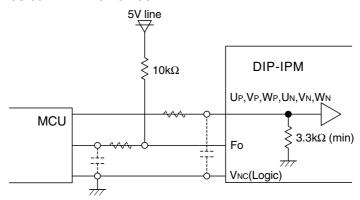
[B] Under-Voltage Protection (Lower-side, UVD)

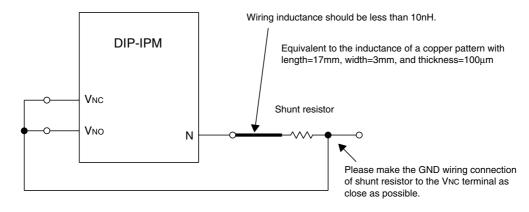
- b1. Control supply voltage rising : After the voltage level reaches UVDr, the circuits start to operate when next input is applied. b2. Normal operation : IGBT ON and carrying current.
- b3. Under voltage trip (UVDt).
- b4. IGBT OFF in spite of control input condition.
- b5. Fo output (tFo ≥ 20µs and Fo output continuously during UV period).
 b6. Under voltage reset (UVDr).
 b7. Normal operation: IGBT ON and carrying current.

TRANSFER-MOLD TYPE **INSULATED TYPE**

[C] Under-Voltage Protection (Upper-side, UVDB)

- c1. Control supply voltage rises: After the voltage reaches UVDBr, the circuits start to operate when next input is applied. c2. Normal operation: IGBT ON and carrying current.
- c3. Under voltage trip (UVDBt).
- c4. IGBT OFF in spite of control input signal level, but there is no Fo signal output.
- c5. Under voltage reset (UVDBr).
- c6. Normal operation: IGBT ON and carrying current.

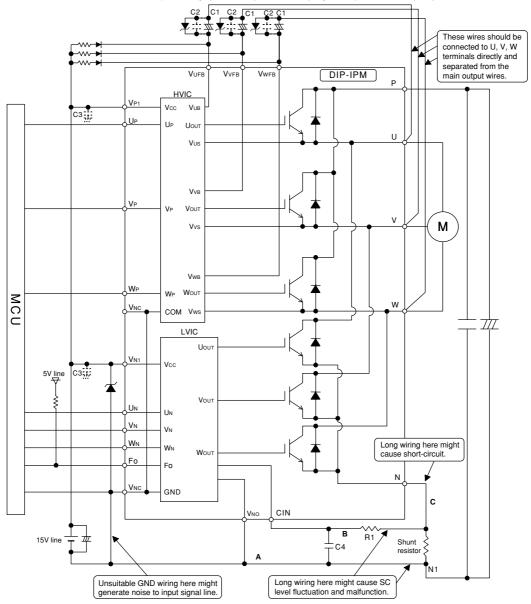




Fig. 8 RECOMMENDED MCU I/O INTERFACE CIRCUIT

Note: The setting of RC coupling at each input (parts shown dotted) depends on the PWM control scheme and the wiring impedance of the printed circuit board.

The DIP-IPM input section integrates a $3.3k\Omega$ (min) pull-down resistor. Therefore, when using an external filtering resistor, pay attention to the turn-on threshold voltage.

Fig. 9 WIRING CONNECTION OF SHUNT RESISTOR



TRANSFER-MOLD TYPE **INSULATED TYPE**

Fig. 10 AN EXAMPLE OF TYPICAL DIP-IPM APPLICATION CIRCUIT

C1: Electrolytic capacitor with super good temperature characteristics C2,C3: 0.22~2µF R-category ceramic capacitors with super good temperature and frequency characteristics

- Note 1 : To prevent malfunction, the wiring of each input should be as short as possible (2~3cm).
 - 2 : By virtue of integrating HVIC inside, direct coupling to MCU without opto-coupler or transformer isolation is possible.

 - 3 : Fo output is open drain type, it should be pulled up to a 5V supply with an approximately 10kΩ resistor.
 4 : The logic of input signal is high-active. The DIP-IPM input signal section integrates a 3.3kΩ (min) pull-down resistor.
 - If using external filtering resistor, ensure the voltage drop of ON signal not below the threshold value.
 - 5 : To prevent malfunction of protection, the wiring of A, B, C should be as short as possible.
 - : Please set the filter R1C4 time constant such that the IGBT can be interrupted within $2\mu s$.
 - : Each capacitor should be located as nearby the pins of the DIP-IPM as possible.
 - :To prevent surge destruction, the wiring between the smoothing capacitor and the P&N1 pins should be as short as possible. Approximately a 0.1~0.22μF snubber capacitor between the P&N1 pins is recommended.
 - : Make external wiring connection between VNO and VNC terminals as shown in Fig.9.
 - 10 : Two VNC terminals (9 & 16 pin) are connected inside DIP-IPM, please connect either one to the 15V power supply GND outside and leave another one open.
 - 11: It is recommended to insert a Zener diode (24V/1W) between each pair of control supply terminals to prevent surge destruction.

