74F539 Dual 1-of-4 Decoder with 3-STATE Outputs

General Description

FAIRCHILD

SEMICONDUCTOR

The 74F539 contains two independent decoders. Each accepts two Address (A₀, A₁) input signals and decodes them to select one of four mutually exclusive outputs. A polarity control input (P) determines whether the outputs are active HIGH (P = L) or active LOW (P = H). An active LOW input Enable (E) is available for data demultiplexing; data is routed to the selected output in non-inverted form in the active LOW mode or in inverted form in the active HIGH mode. A HIGH signal on the active LOW Output Enable (\overline{OE}) input forces the 3-STATE outputs to the high impedance state.

Ordering Code:

Order Number	Package Number	Package Description				
74F539SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide				
74F539PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide				
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.						

Logic Symbols **Connection Diagram** A₀ A₁ A₀ A₁ 0_{2b} 20 •V_{CC} 0_{1b} 19 -0_{3b} DECODER a DECODER b 0_{0b} 18 - A_{1b} 0E 00 01 02 03 0E 01 02 03 0م Ph 17 AOP 0E, 16 Ēь IEEE/IEC A_{0a} Ē 15 ŌĒ, DMUX A_{1a} N10 0_{3a} 13 ۰Pa OF. 0,10 🗸 0_{0b} -0_{0a} 0_{2a} 12 - 0_{1b} 1,10 7 0 •0_{1a} GND 10 11 2,10 🗸 0_{2b} A_{1b} 3,10 7 - 0_{3b} 0_{0a} ŌĒa 0_{1a} 0_{2a} - 0_{3a}

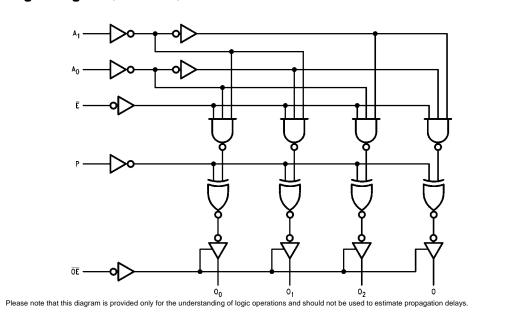
© 1999 Fairchild Semiconductor Corporation DS009552

74F539

Unit Loading/Fan Out

Input I_{IH}/I_{IL} U.L. **Pin Names** Description Output I_{OH}/I_{OL} HIGH/LOW A_{0a}-A_{1a} Side A Address Inputs 1.0/1.0 20 µA/-0.6 mA Side B Address Inputs 1.0/1.0 20 µA/-0.6 mA $A_{0b} - A_{1b}$ $\overline{\mathsf{E}}_{\mathsf{a}}, \overline{\mathsf{E}}_{\mathsf{b}}$ Enable Inputs (Active LOW) 1.0/1.0 $20 \ \mu\text{A/--}0.6 \ \text{mA}$ $\overline{OE}_a, \overline{OE}_b$ Output Enable Inputs (Active LOW) 1.0/1.0 $20 \; \mu\text{A/--}0.6 \; \text{mA}$ $\mathsf{P}_{\mathsf{a}}, \mathsf{P}_{\mathsf{b}}$ Polarity Control Inputs 1.0/1.0 $20\;\mu\text{A/--}0.6\;\text{mA}$ O_{0a}–O_{3a} Side A 3-STATE Outputs 150/40 (33.3) -3 mA/24 mA (20 mA) O_{0b}–O_{3b} Side B 3-STATE Outputs 150/40 (33.3) -3 mA/24 mA (20 mA)

Truth Table


(each	ı ha	lf)

-		Inj	outs		Outputs			
Function	OE	Ē	A ₁	A ₀	O ₀	0 ₁	0 ₂	O ₃
High Impedance	Н	Х	Х	Х	Z	Z	Z	Z
Disable	L	Н	Х	Х		On	= P	
Active HIGH	L	L	L	L	Н	L	L	L
Output	L	L	L	н	L	н	L	L
(P = L)	L	L	н	L	L	L	н	L
	L	L	н	Н	L	L	L	н
Active LOW	L	L	L	L	L	Н	Н	Н
Output	L	L	L	н	н	L	н	Н
(P = H)	L	L	н	L	н	н	L	Н
	L	L	н	н	н	н	н	L

 H = HIGH Voltage Level
 X = Immaterial

 L = LOW Voltage Level
 Z = High Impedance

Logic Diagram (one half shown)

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max)

-65°C to +150°C -55°C to +125°C -55°C to +150°C -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V_{CC}

-0.5V to +5.5V

twice the rated I_{OL} (mA)

Recommended Operating Conditions

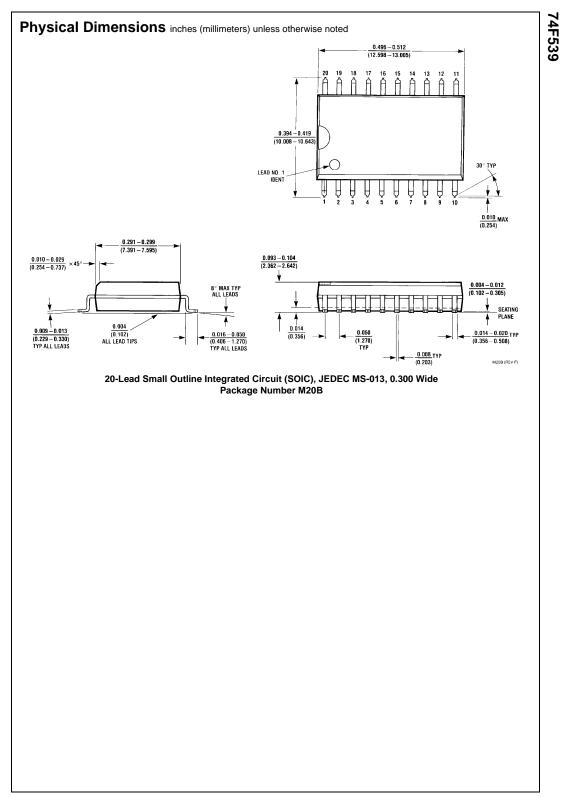
Free Air Ambient Temperature Supply Voltage

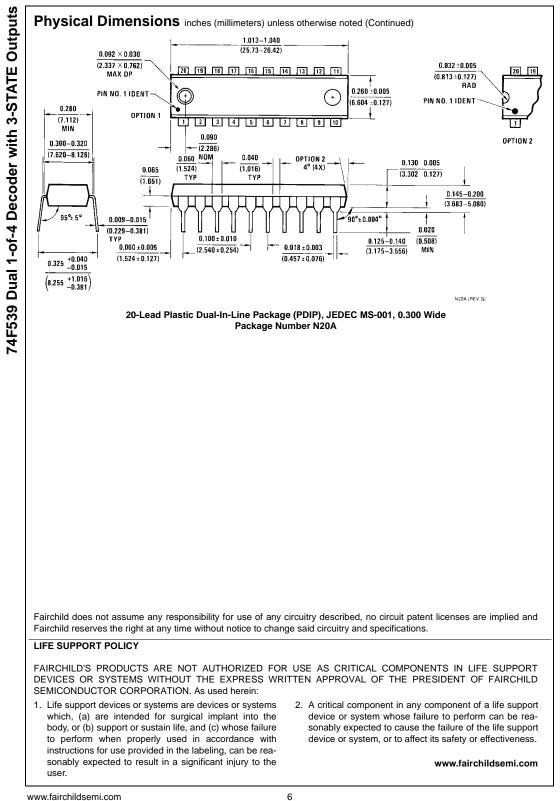
o∘c

74F539

0°C to +70°C +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signa
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	10% V _{CC} 10% V _{CC} 5% V _{CC} 5% V _{CC}	2.5 2.4 2.7 2.7			v	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -3 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -3 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA
Ι _{ΙΗ}	Input HIGH Current				5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown Test				7.0	μΑ	Max	V _{IN} = 7.0V
ICEX	Output HIGH Leakage Current				50	μΑ	Max	V _{OUT} = V _{CC}
V _{ID}	Input Leakage Test		4.75			v	0.0	I _{ID} = 1.9 μA All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current				3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
I _{OZH}	Output Leakage Current				50	μΑ	Max	$V_{OUT} = 2.7V$
I _{OZL}	Output Leakage Current				-50	μΑ	Max	$V_{OUT} = 0.5V$
los	Output Short-Circuit Curren	nt	-60		-150	mA	Max	V _{OUT} = 0V
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V
ICCH	Power Supply Current		1	28	45	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current			40	60	mA	Max	$V_0 = LOW$
I _{CCZ}	Power Supply Current			40	60	mA	Max	V _O = HIGH Z

DC Electrical Characteristics

AC Electrical Characteristics

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$				$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	
PLH	Propagation Delay	4.0	14.5	18.5	3.5	19.5	
PHL	A _n to O _n	4.0	9.5	12.0	4.0	13.0	ns
PLH	Propagation Delay	5.0	12.0	16.0	5.5	17.0	ns
PHL	Ē to O _n	4.0	7.5	9.5	4.0	10.5	
PLH	Propagation Delay	7.5	14.5	21.5	4.5	22.5	
PHL	P to On	5.0	11.0	16.5	4.5	17.5	ns
PZH	Output Enable Time	4.5	8.0	10.5	4.0	11.5	
t _{PZL}	OE to On	5.5	10.0	13.0	5.0	14.0	
PHZ	Output Disable Time	2.0	4.5	6.5	2.0	7.0	ns
t _{PLZ}	OE to On	3.0	6.5	8.5	3.0	9.5	

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.