

CMOS Low Power Consumption

Input Frequency
: 12 kHz to 35 MHz
Divider Ratio

- Multiplier Ratio
: 1, 3~2047 Divisions
(Laser Trimming)
: 6~2047 Multiplications (Laser Trimming)
-Comparative Frequency: 12kHz~500kHz
- Output Frequency $: 3 \mathrm{MHz} \sim 30 \mathrm{MHz}$

GENERAL DESCRIPTION

The XC25BS5 series are high frequency, low power consumption PLL clock generator ICs with divider circuit \& multiplier PLL circuit.
Laser trimming gives the option of being able to select from divider ratios (M) of 1,3 to 2047 and multiplier ratios (N) of 6 to 2047.
Output frequency (QO) is equal to reference oscillation (fCLKin) multiplied by N / M, within a range of 3 MHz to 30 MHz . Q1 output is selectable from input reference frequency (f0), input reference frequency/2 (f0/2), ground (GND), and comparative frequency (f0/M). Further, comparative frequencies, within a range of 12 KHz to 500 KHz , can be obtained by dividing the reference oscillation. By halting operation via the CE pin, consumption current can be controlled and output will be one of high-impedance.

PIN CONFIGURATION

*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release.
If the pad needs to be connected to other pins, it should be connected to the Vod pin.

APPLICATIONS

- Crystal oscillation modules

Personal computers
PDAs

- Portable audio systems
- Various system clocks

FEATURES

Output Frequency : $3 \mathrm{MHz} \sim 30 \mathrm{MHz}(\mathrm{Q} 0=\mathrm{fCLKin} \times \mathrm{N} / \mathrm{M}$) Reference Oscillation (fCLKin)
$: 12 \mathrm{kHz} \sim 35 \mathrm{MHz}$
Divider Ratio (M) : Selectable from divisions of 1, 3~2047
Multiplier Ratio (N) : Selectable from multiplications of 6~2047
Output : 3-State
Q1 output selectable from input reference oscillation, input reference oscillation/2, GND, comparative frequency.

Operating Voltage Range

$$
: 2.97 \mathrm{~V} \sim 5.5 \mathrm{~V}
$$

Low Power Consumption

: CMOS (stand-by function included)*1
Ultra Small Package: SOT-26, USP-6B
*1 High output impedance during standby
PIN ASSIGNMENT

PIN NUMBER		PIN	FUNCTION
SOT-26	USP-6B	NAME	Chip Enable
1	3	CE	GND
2	2	Vss	PLL Output
3	1	Q0	Refence Oscillation,
4	6	Q1	Reference Oscillation/2, Referen or Comparative GND, Frequency Output
5	5	VDD	Power Supply 6
	4	CLKin	Reference Clock Input

FUNCTION LIST
-CE, Q0/Q1 Pin Function

C E	FUNCTION
"H"	Q0, Q1 Clock Output
"L"	Stand-by. Output Pin = High Impedance
Open	Stand-by. Output Pin = High Impedance (Vss Pin Pull-Down Due to IC's Internal Resistor)

■PRODUCT CLASSIFICATION

- Ordering Information

XC25BS5 (1)(2)(3)(5)

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
(1) (2) (3)	Product Number	Integer	: Based on internal standards e.g. Product number 001 \rightarrow (1)(2)(3) $=001$
	Package	M	$:$ SOT-26
		D	$:$ USP-6B
(5)	Device Orientation	R	$:$ Embossed tape, standard feed
		L	$:$ Embossed tape, reverse feed

PACKAGING INFORMATION

-SOT-26

A-A' cross section

MARKING RULE

-SOT-26

SOT-26 (TOP VIEW)

OUSP-6B

(1) Represents product series

MARK	PRODUCT SERIES
5	XC25BS51xxMx

(2)(3) Represents (2) and (3) of ordering information

MARK		PRODUCT SERIES
(2)	(3)	
0	7	XC25BS5107Mx

(4) Represents assembly lot number (Based on internal standards)
(1),(2),(3) Represents product series

MARK			PRODUCT SERIES
(1)	(2)	(3)	
B	S	0	XC25BS50xxDx
S	5	S	XC25BS5SxxDx

(4),(5) Represents (2) and (3) of ordering information (ex.)

MARK		PRODUCT SERIES
(4)	5	
0	7	XC25BS5007Dx
0	1	XC25BS5S01Dx

(6) Represents production lot number 0 to 9,A to Z repeated (G, I, J, O, Q, W excepted) Note: No character inversion used.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	CONDITIONS	UNITS
Supply Voltage		VDD	Vss-0.3 ~ Vss+7.0	V
CLKin Pin Voltage		Vck	Vss-0.3 ~ VdD+0.3	V
CE Pin Voltage		Vce	Vss-0.3 ~ VdD+0.3	V
Q0 Pin Voltage		VQ0	Vss-0.3 ~ VdD+0.3	V
Q1 Pin Voltage		VQ1	Vss-0.3 ~ VdD+0.3	V
Q0 Output Current		IQ0	± 50	mA
Q0 Output Current		IQ1	± 50	mA
Power Dissipation	SOT-26	Pd	150	mW
	USP-6B		100	
Operating Temperature Range		Topr	$-30 \sim+80$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		Tstg	-40~+125	${ }^{\circ} \mathrm{C}$

XC25BS5 Series

■ FREQUENCY CONFIGURATION: EXAMPLE 1

XC25BS51XXMR

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
Input Frequency	f CLKin	11.0000	-	16.9344	MHz
Multiplier/Divider Ratio	N/M	-	1.594	-	-
PLL Output Frequency	fQ0	17.5383	-	27.0000	MHz
Q1 Output Frequency	Q1	GND			

- Electrical Characteristics (DC)

XC25BS51xxMR
fCLKin $=16.9344 \mathrm{MHz}$, Multiplier/Divider Ratio $=1.594, \mathrm{Ta}=25^{\circ} \mathrm{C}$, No Load

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	VDD		2.97	3.30	3.63	V
Input Voltage "High"	VIH		2.7	-	-	V
Input Voltage "Low"	VIL		-	-	0.6	V
Input Current "High"	IIH	$\mathrm{VCK}=3.3 \mathrm{~V}$	-	-	3.0	$\mu \mathrm{~A}$
Input Current "Low"	IIL	$\mathrm{VCK}=0 \mathrm{~V}$	-3.0	-	-	$\mu \mathrm{A}$
Output Voltage "High"	VoH	$\mathrm{VDD}=2.97 \mathrm{~V}, \mathrm{IOH}=-8 \mathrm{~mA}$	2.5	-	-	V
Output Voltage "Low"	VOL	$\mathrm{VDD}=2.97 \mathrm{~V}, \mathrm{IOL}=8 \mathrm{~mA}$	-	-	0.4	V
Supply Current 1	$\mathrm{IDD1}$	$\mathrm{CE}=3.3 \mathrm{~V}$	-	3.0	6.0	mA
Supply Current 2	$\mathrm{IDD2}$	$\mathrm{CE}=0 \mathrm{~V}$	-	-	5.0	$\mu \mathrm{~A}$
CE "High" Voltage	VCEH		2.7	-	-	V
CE "Low" Voltage	VCEL		-	-	0.45	V
CE Pull-Down Resistance 1	$\mathrm{Rp1}$	$\mathrm{CE}=3.3 \mathrm{~V}$	0.5	1.5	2.5	$\mathrm{M} \Omega$
CE Pull-Down Resistance 2	$\mathrm{Rp2}$	$\mathrm{CE}=0.3 \mathrm{~V}$	20.0	50.0	80.0	$\mathrm{k} \Omega$

Electrical Characteristics (AC)
XC25BS51xxMR
fCLKin=16.9344MHz, Multiplier/Divider Ratio=1.594, Ta=25º ${ }^{\circ}$, CL= $=15 \mathrm{pF}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Rise Time	TTLH	VDD $=3.3 \mathrm{~V}(20 \%$ to $80 \%)(* 1)$	-	5.0	-	Ns
Output Fall Time	TTHL	VDD $=3.3 \mathrm{~V}(20 \%$ to $80 \%)(* 1)$	-	5.0	-	Ns
Duty Ratio	DUTY		40	50	60	$\%$
Output Start Time	Ton	$(* 1)$	-	-	20	ms
PLL Output Jitter	Tj	$1 \sigma \quad(* 1)$	-	40	-	ps

*1 R\&D guarantee

■ FREQUENCY CONFIGURATION: EXAMPLE 2

XC25BS51XXMX

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
Input Frequency	f CLKin	52.0000	-	78.0000	kHz
Multiplier/Divider Ratio	N/M	-	256.000	-	-
PLL Output Frequency	fQ0	13.312	-	19.968	MHz
Q1 Output Frequency	Q1	GND			

- Electrical Characteristics (DC)

XC25BS51xxMR
fCLKin $=78 \mathrm{kHz}$, Multiplier/Divider Ratio $=256$, $\mathrm{Ta}=25^{\circ} \mathrm{C}$, No Load

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	VDD		2.97	3.30	3.63	V
Input Voltage "High"	VIH		2.7	-	-	V
Input Voltage "Low"	VIL		-	-	0.6	V
Input Current "High"	IIH	VCK=3.3V	-	-	3.0	$\mu \mathrm{~A}$
Input Current "Low"	IIL	VCK=0V	-3.0	-	-	$\mu \mathrm{A}$
Output Voltage "High"	VoH	VDD=2.97V, IOH= -8 mA	2.5	-	-	V
Output Voltage "Low"	VoL	VDD=2.97V, IoL=8mA	-	-	0.4	V
Supply Current 1	IDD1	CE=0.3V	-	2.0	4.0	mA
Supply Current 2	IDD2	CE=0V	-	-	5.0	$\mu \mathrm{~A}$
CE " High " Voltage	VCEH		2.7	-	-	V
CE "Low" Voltage	VCEL		-	-	0.45	V
CE Pull-Down Resistance 1	Rp1	CE=3.3V	0.5	1.5	2.5	$\mathrm{M} \Omega$
CE Pull-Down Resistance 2	Rp2	CE=0.3V	20.0	50.0	80.0	$\mathrm{~K} \Omega$

- Electrical Characteristics (AC)

XC25BS51xxMR
$\mathrm{fCLKin}=78 \mathrm{kHz}$, Multiplier/Divider Ratio=256, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{CL}=15 \mathrm{pF}$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Output Rise Time	TTLL	VDD $=3.3 \mathrm{~V}(20 \%$ to $80 \%)\left({ }^{* 1}\right)$	-	5.0	-	Ns
Output Fall Time	TTHL	VDD $=3.3 \mathrm{~V}(20 \%$ to $80 \%)(* 1)$	-	5.0	-	Ns
Duty Ratio	DUTY		40	50	60	$\%$
Output Start Time	Ton	$(* 1)$	-	-	20	ms
PLL Output Jitter	Tj	$1 \sigma\left({ }^{*} 1\right)$	-	20	-	ps

XC25BS5 Series

■TYPICAL APPLICATION CIRCUITS

(1) Q1 Pin - reference oscillation, reference oscillation/2, comparative frequency

(2) Q1 Pin-GND

NOTE

(1) Please insert a by-pass capacitor of $0.1 \mu \mathrm{~F}$.
(2) Rq0 and Rq1 are matching resistors. Their use is recommended in order to counter unwanted radiations.
(3) Please place a by-pass capacitor and matching resistors as close to the IC as possible. It may be that the output cannot be locked if the by-pass capacitor is not close enough to the IC. Further, there is a possibility of unwanted radiation occurrence between the resistor and the IC pin if the matching resistor is not close enough to the IC.
(4) When selecting GND for the Q1 pin, although the output of Q1 pin is GND level, it is also recommended that the Q1 pin be connected to GND pattern on the PCB.
(5) When the CE pin is not controlled by external signals, it is recommended that a time constant circuit of $\mathrm{R} 1=1 \mathrm{k} \Omega$ $\times \mathrm{C} 1=0.1 \mu \mathrm{~F}$ be added for stability.
(6) With this IC, output is achieved by dividing and multiplying the reference oscillation by means of the PLL circuit. In cases where this output is further used as a reference oscillation of another PLL circuit, it may be that the final output signal's jitter increases, so all necessary precautions should be taken to avoid this.
(7) It is recommended that a low noise power supply, such as a series regulator, be used for the supply voltage. Using a power supply such as a switching regulator might lead to a larger jitter, which in turn may lead to an inability to lock due to the ripple of the switching regulator.
(8) As for this IC, synchronization of input and output signal's edge is not guaranteed though the input frequency operates to the output frequency multiply.

REFERENCE LAND PATTERN

(1) Q1 Pin - reference oscillation, reference oscillation/2, comparative frequency

(2) Q1 Pin-GND

XC25BS5 Series

■AC CHARACTERISTIC WAVEFORMS

1) Output Rise Time / Output Fall Time

2) Duty Ratio

3) Output Start Time

1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this catalog is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this catalog.
3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this catalog.
4. The products in this catalog are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
5. Please use the products listed in this catalog within the specified ranges.

Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this catalog may be copied or reproduced without the prior permission of Torex Semiconductor Ltd.

TOREX SEMICONDUCTOR LTD.

