

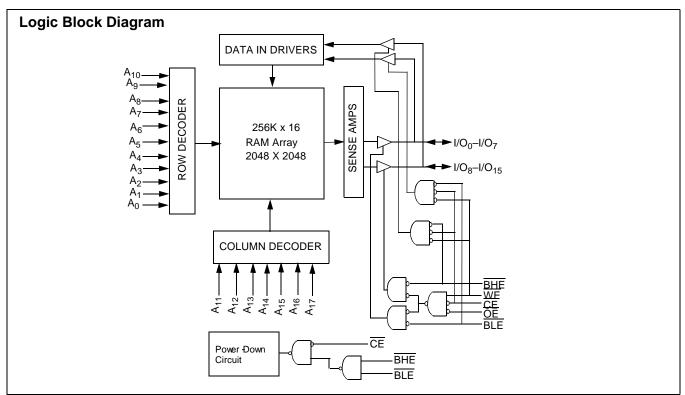
WCMB4016R4X

Features

- Low voltage range:
 - —1.65V–1.95V
- Ultra-low active power
 - Typical Active Current: 0.5 mA @ f = 1 MHz
- Typical Active Current: 2 mA @ f = f_{max} (70 ns speed)
- Low standby power
- Easy memory expansion with \overline{CE} and \overline{OE} features
- Automatic power-down when deselected
- CMOS for optimum speed/power

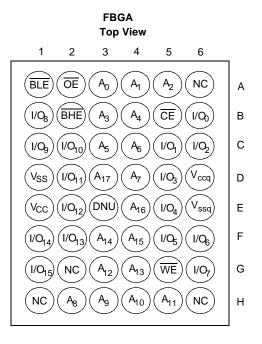
Functional Description

The WCMB4016R4X is a high-performance CMOS static RAM organized as 256K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This device is ideal for portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH or both BLE


256K x 16 Static RAM

and $\overline{\text{BHE}}$ are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, BLE HIGH), or during a write operation ($\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₇).


Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table at the back of this data sheet for a complete description of read and write modes.

The WCMB4016R4X is available in a 48-ball FBGA package.

Pin Configuration^[1, 2]

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.2V to +2.4V

DC Voltage Applied to Outputs

in High Z State ^[3]	–0.2V to V_{CC} + 0.2V
DC Input Voltage ^[3]	–0.2V to V _{CC} + 0.2V
Output Current into Outputs (LOW)	
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
WCMB4016R4X	Industrial	–40°C to +85°C	1.65V to 1.95V

Product Portfolio

					Powe	er Dissipa	tion (Indust	trial)		
						Operat	ing (I _{CC})			
	V _{CC} Range				f = 1	MHz	f =	f _{max}	Standby	(I _{SB2})
Product	V _{CC(min.)}	V _{CC(typ.)} ^[4]	V _{CC(max.)}	Speed	Typ. ^[4]	Max.	Тур. ^[4]	Max.	Typ. ^[4]	Max.
WCMB4016R4X	1.65V	1.80V	1.95V	70 ns	0.5 mA	3 mA	2 mA	6 mA	1 μΑ	10 µA

Notes:

NC pins are not connected to the die.
 E3 (DNU) can be left as NC or V_{SS} to ensure proper application.
 V_{IL}(min) = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)} Typ, T_A = 25°C.

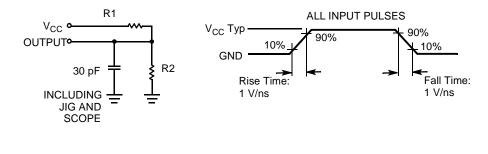
Electrical Characteristics Over the Operating Range

				W	CMB4016F	AX	
Parameter	Description	Test Cond	Min.	Typ. ^[4]	Max.	Unit	
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	$V_{CC} = 1.65V$	1.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{\rm CC} = 1.65 V$			0.2	V
V _{IH}	Input HIGH Voltage			1.4		V _{CC} + 0.2V	V
V _{IL}	Input LOW Voltage		-0.2		0.4	V	
I _{IX}	Input Leakage Current	$GND \leq V_I \leq V_{CC}$	-1		+1	μA	
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}, \\ \text{abled} \end{array}$	Output Dis-	-1		+1	μA
	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{\rm CC} = 1.95V$		2	6	mA
I _{CC}	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		0.5	3	mA
I _{SB1}	Automatic CE Power-Down Cur- rent— CMOS Inputs	$\label{eq:constraint} \begin{split} \overline{CE} &\geq V_{CC} - 0.2V, \\ V_{IN} &\geq V_{CC} - 0.2V, \\ f &= f_{MAX} (Address a f = 0 (OE, WE, BH) \end{split}$		1	10	μA	
I _{SB2}	Automatic CE Power-Down Cur- rent— CMOS Inputs	$\label{eq:VCC} \begin{split} \overline{\text{CE}} &\geq \text{V}_{\text{CC}} - 0.2\text{V} \\ \text{V}_{\text{IN}} &\geq \text{V}_{\text{CC}} - 0.2\text{V} \\ \text{f} &= 0, \text{V}_{\text{CC}} = 1.95\text{V} \end{split}$					

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

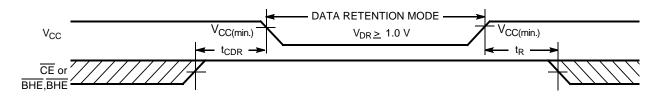
Thermal Resistance


Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance (Junction to Ambient) ^[5]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[5]		Θ_{JC}	16	°C/W

Note:

5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


THÉVENIN EQUIVALENT Equivalent to: RTH OUTPUT -**-0** V

Parameters	1.8V	UNIT
R1	13500	Ohms
R2	10800	Ohms
R _{TH}	6000	Ohms
V _{TH}	0.80	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit
V _{DR}	V_{CC} for Data Retention		1.0		1.95	V
I _{CCDR}	Data Retention Current	$\label{eq:constraint} \begin{array}{l} \frac{V_{CC}}{CE} = 1.0V\\ \overline{CE} \geq V_{CC} - 0.2V,\\ V_{IN} \geq V_{CC} - 0.2V \text{ or } V_{IN} \leq 0.2V \end{array}$		1	8	μA
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0			ns
t _R ^[6]	Operation Recovery Time		t _{RC}			ns

Data Retention Waveform^[7]

Notes:

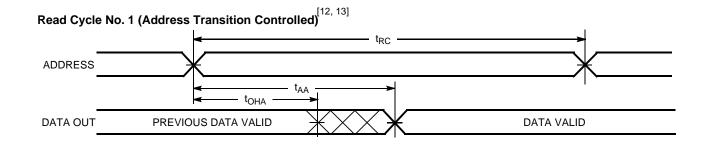
- <u>Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 µs or stable at V_{CC(min)} ≥ 100 µs.
 BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.
 </u>

Switching Characteristics Over the Operating Range^[8]

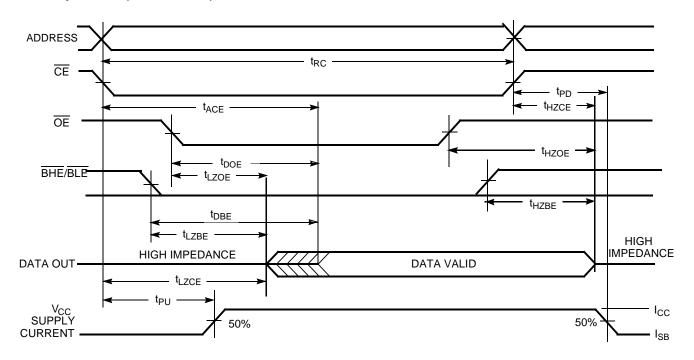
		70	ns	
Parameter	Description	Min.	Max.	Unit
READ CYCLE	· · · · · ·			
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[9]	5		ns
t _{HZOE}	OE HIGH to High Z ^[9, 10]		25	ns
t _{LZCE}	CE LOW to Low Z ^[9]	10		ns
t _{HZCE}	CE HIGH to High Z ^[9, 10]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
t _{DBE}	BLE/BHE LOW to Data Valid		70	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[9]	5		ns
t _{HZBE}	BLE/BHE HIGH to High Z ^[9, 10]		25	ns
WRITE CYCLE	[11]			
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{BW}	BLE/BHE LOW to Write End	60		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[9, 10]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[9]	10		ns

Notes:

8.


Test conditions assume signal transition time of 3ns or less, timing reference levels of $V_{CC(typ)}/2$, input pulse levels of 0 to $V_{CC(typ)}$, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZDE} , t_{HZDE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZOE} . 9.

10. 11.

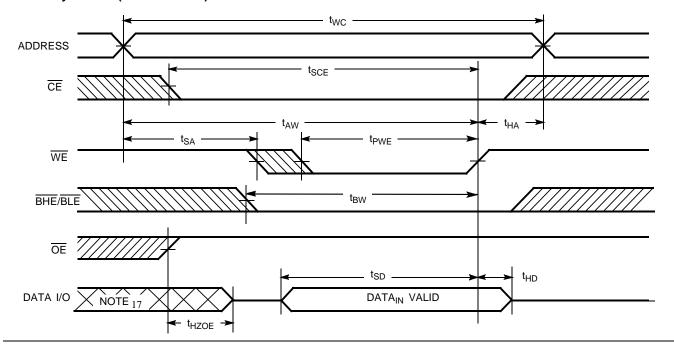

the range given device. t_{HZOE} , t_{HZEE} , t_{HZBE} , and t_{HZWE} transitions are measured when the outp<u>uts enter</u> a high <u>impe</u>dance <u>state</u>. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL} , BHE and/or BLE = V_{IL} . All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write

Switching Waveforms

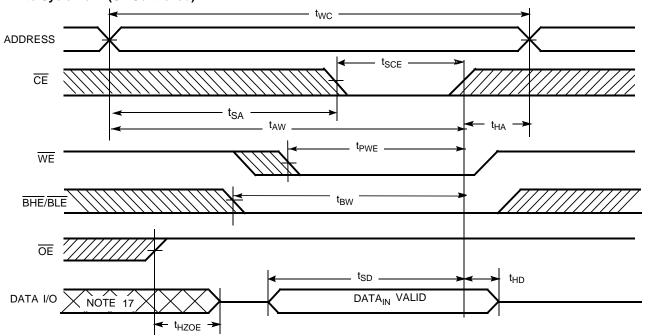
Read Cycle No. 2 (OE Controlled)^[13, 14]

Notes:

- 12. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$.

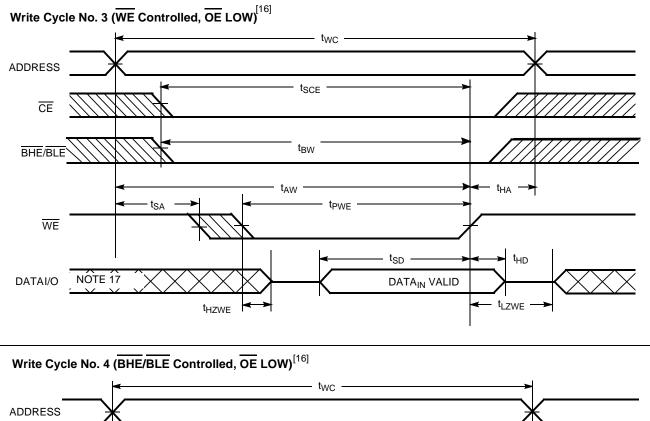

 13. WE is HIGH for read cycle.

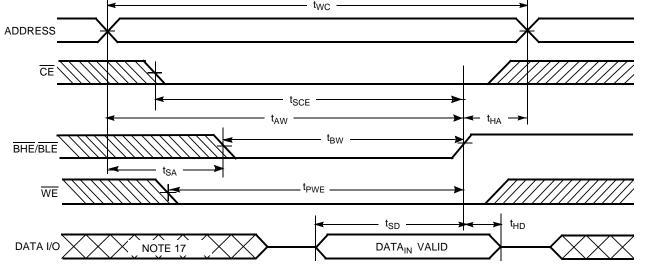
 14. Address valid prior to or coincident with \overline{CE} , \overline{BHE} , \overline{BLE} , transition LOW.



Switching Waveforms

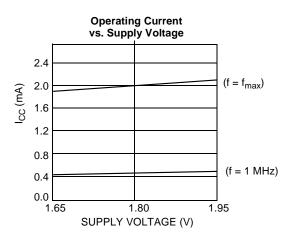
Write Cycle No. 2 (CE Controlled)^[11, 15, 16]

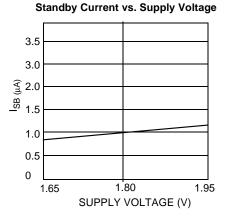


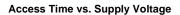

Notes:

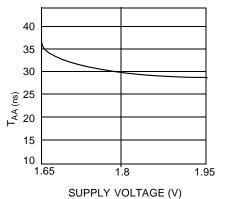
^{15.} Data I/O is high impedance if $\overline{OE} = V_{IB}$. 16. If \overline{CE} goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state. 17. During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms





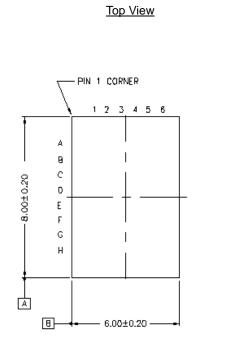


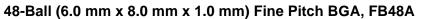

Typical DC and AC Characteristics

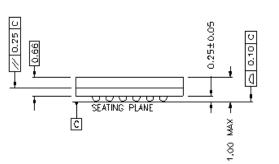
(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC}$ Typ, $T_A = 25^{\circ}C$.)

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O –I/O ₇); Write I/O ₈ –I/O ₁₅ in High Z		Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); Write I/O ₀ –I/O ₇ in High Z		Active (I _{CC})




Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMB4016R4X-FF70	FB48A	48-Ball Fine Pitch BGA	Industrial



Package Diagrams

Document Title: WCMB4016R4X, 256K x 16 Static RAM					
REV.	Spec #	ECN #	Issue Date	Orig. of Change	Description of Change
**	38-14012	115228	1/17/02	MGN	New Data Sheet