V53C16258SH HIGH PERFORMANCE 256K X 16 EDO PAGE MODE CMOS DYNAMIC RAM SELF REFRESH

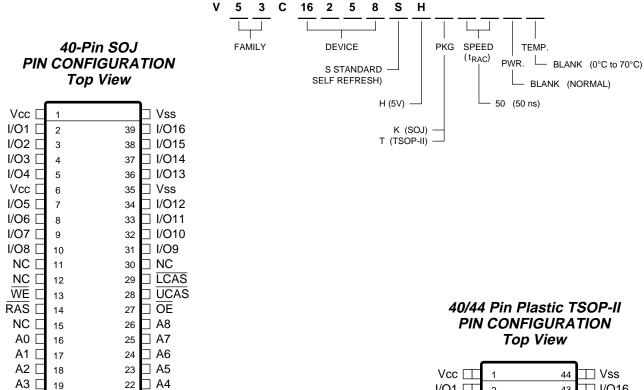
PRELIMINARY

HIGH PERFORMANCE	50
Max. RAS Access Time, (t _{RAC})	50 ns
Max. Column Address Access Time, (t _{CAA})	24 ns
Min. Extended Data Out Mode Cycle Time, (t _{PC})	19 ns
Min. Read/Write Cycle Time, (t _{RC})	90 ns

Features

- 256K x 16-bit organization
- EDO Page Mode for a sustained data rate of 53 MHz (-50ns)
- RAS access time: 50 ns
- Dual CAS Inputs
- Low power dissipation
- Read-Modify-Write, RAS-Only Refresh, CAS-Before-RAS Refresh
- Self Refresh
- Refresh Interval: 512 cycles/8 ms
- Available in 40-pin 400 mil SOJ and 40/44L-pin 400 mil TSOP-II packages
- Single +5V ±10% Power Supply
- TTL Interface

Description


The V53C16258SH is a high speed 262,144 x 16 bit high performance CMOS dynamic random access memory. The V53C16258SH offers a combination of unique features including: EDO Page Mode operation for higher sustained bandwidth with Page Mode cycle times as short as 19ns. All inputs are TTL compatible. Input and output capacitance is significantly lowered to increase performance and minimize loading. These features make the V53C16258SH ideally suited for a wide variety of high performance computer systems and peripheral applications.

Device Usage Chart

Operating	Package	Outline	Access Time (ns)	Power	Townserstown
Temperature Range	K	Т	50	Std.	Temperature Mark
0°C to 70°C	•	•	•	•	Blank

V53C16258SH

Part Name	Self Refresh	Supply Voltage	Package	Speed
V53C16258SHK50	Standard Self Refresh (8ms)	5V	SOJ	50
V53C16258SHT50	Standard Self Refresh (8ms)	5V	TSOP	50

Pin Names

Vcc □

20

A ₀ -A ₈	Address Inputs
RAS	Row Address Strobe
UCAS	Column Address Strobe/Upper Byte Control
LCAS	Column Address Strobe/Lower Byte Control
WE	Write Enable
ŌĒ	Output Enable
I/O ₁ -I/O ₁₆	Data Input, Output
V _{CC}	+5V Supply
V _{SS}	0V Supply
NC	No Connect

☐ Vss

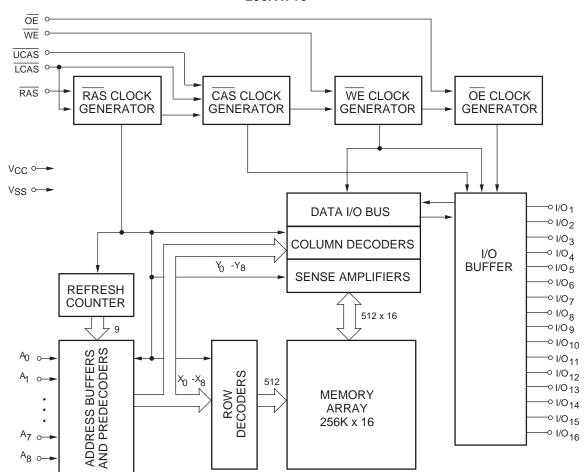
40/44 Pin Plastic TSOP-II **PIN CONFIGURATION** Top View

			•
Vcc □	1	44	□ Vss
I/O1 🗀	2	43	
I/O2	3	42	
I/O3 🗀	4	41	
I/O4 🖂	5	40	
Vcc □	6	39	□ Vss
I/O5 🖂	7	38	
I/O6 🞞	8	37	
I/O7	9	36	
I/O8 🞞	10	35	
NC □	13	32	□⊓NC
NC I	14	31	LCAS
WE I	15	30	UCAS
RAS I	16	29	
NC I	17	28	☐ A8
A0 🞞	18	27	A7
A1 □	19	26	A6
A2 □	20	25	Ш А5
А3 Ш	21	24	Ⅲ A4
Vcc □	22	23	□ Vss
			J

Absolute Maximum Ratings*

*Note: Operation above Absolute Maximum Ratings can adversely affect device reliability.

Capacitance*


 $T_A = 25$ °C, $V_{CC} = 5 \text{ V} \pm 10$ %, $V_{SS} = 0 \text{ V}$

Symbol	Parameter	Тур.	Max.	Unit
C _{IN1}	Address Input	3	4	pF
C _{IN2}	RAS, CAS, WE, OE	4	5	pF
C _{OUT}	Data Input/Output	5	7	pF

^{*} Note: Capacitance is sampled and not 100% tested

Block Diagram

256K x 16

DC and Operating Characteristics (1-2) T_A = 0°C to 70°C, V_{CC} = 5 V \pm 10%, V_{SS} = 0 V, unless otherwise specified.

		V53C16258SH					
Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Notes
ILI	Input Leakage Current (any input pin)	-10		10	μΑ	V _{SS} ≤ V _{IN} ≤ V _{CC}	
I _{LO}	Output Leakage Current (for High-Z State)	-10		10	μА	V _{SS} ≤ V _{OUT} ≤ V _{CC} RAS, CAS at V _{IH}	
I _{CC1}	V _{CC} Supply Current, Operating			160	mA	$t_{RC} = t_{RC}$ (min.)	1, 2
I _{CC2}	V _{CC} Supply Current, TTL Standby			2	mA	RAS, CAS at V _{IH} other inputs ≥ V _{SS}	
I _{CC3}	V _{CC} Supply Current, RAS-Only Refresh			160	mA	$t_{RC} = t_{RC}$ (min.)	2
I _{CC4}	V _{CC} Supply Current, EDO Page Mode Operation			150	mA	Minimum Cycle	1, 2
I _{CC5}	V _{CC} Supply Current, Standby, Output Enabled other inputs ≥ V _{SS}			2	mA	$\overline{RAS} = V_{IH}, \overline{CAS} = V_{IL}$	1
I _{CC6}	V _{CC} Supply Current, CMOS Standby			1	mA	$\overline{RAS} \ge V_{CC} - 0.2 \text{ V},$ $\overline{CAS} \ge V_{CC} - 0.2 \text{ V},$ All other inputs $\ge V_{SS}$	
I _{CC7}	Self Refresh Current			400	μΑ	CBR Cycle with t _{RAS} ≥ t _{RASS} (Min.) and CAS = V _{IL}	
V _{CC}	Supply Voltage	4.5	5.0	5.5	V		
V _{IL}	Input Low Voltage	-1		0.8	V		3
V _{IH}	Input High Voltage	2.4		V _{CC} + 1	V		3
V _{OL}	Output Low Voltage			0.4	V	I _{OL} = 2 mA	
V _{OH}	Output High Voltage	2.4			V	I _{OH} = −2 mA	

 $\begin{array}{l} \textbf{AC Characteristics} \\ \textbf{T}_{A} = 0^{\circ}\text{C to } 70^{\circ}\text{C}, \, \textbf{V}_{CC} = 5 \,\, \textbf{V} \pm 10\%, \, \textbf{V}_{SS} = 0 \textbf{V} \,\, \textbf{unless otherwise noted} \\ \textbf{AC Test conditions, input pulse levels 0 to 3V} \end{array}$

			5	60		
#	Symbol	Parameter	Min.	Max.	Unit	Notes
1	t _{RAS}	RAS Pulse Width	50	75K	ns	
2	t _{RC}	Read or Write Cycle Time	90		ns	
3	t _{RP}	RAS Precharge Time	30		ns	
4	t _{CSH}	CAS Hold Time	50		ns	
5	t _{CAS}	CAS Pulse Width	9		ns	
6	t _{RCD}	RAS to CAS Delay	19	36	ns	
7	t _{RCS}	Read Command Setup Time	0		ns	4
8	t _{ASR}	Row Address Setup Time	0		ns	
9	t _{RAH}	Row Address Hold Time	9		ns	
10	t _{ASC}	Column Address Setup Time	0		ns	
11	t _{CAH}	Column Address Hold Time	7		ns	
12	t _{RSH (R)}	RAS Hold Time (Read Cycle)	10		ns	
13	t _{CRP}	CAS to RAS Precharge Time	5		ns	
14	t _{RCH}	Read Command Hold Time Referenced to CAS	0		ns	5
15	t _{RRH}	Read Command Hold Time Referenced to RAS	0		ns	5
16	t _{ROH}	RAS Hold Time Referenced to $\overline{\text{OE}}$	10		ns	
17	t _{OAC}	Access Time from OE		14	ns	12
18	t _{CAC}	Access Time from CAS		14	ns	6, 7, 14
19	t _{RAC}	Access Time from RAS		50	ns	6, 8, 9
20	t _{CAA}	Access Time from Column Address		24	ns	6, 7, 10
21	t _{LZ}	OE or CAS to Low-Z Output	0		ns	16
22	t _{HZ}	OE or CAS to High-Z Output	0	8	ns	16
23	t _{AR}	Column Address Hold Time from RAS	40		ns	
24	t _{RAD}	RAS to Column Address Delay Time		26	ns	11
25	t _{RSH (W)}	RAS or CAS Hold Time in Write Cycle	10		ns	
26	t _{CWL}	Write Command to CAS Lead Time	14		ns	
27	t _{WCS}	Write Command Setup Time 0				12, 13
28	t _{WCH}	Write Command Hold Time	7		ns	
29	t _{WP}	Write Pulse Width	7		ns	

AC Characteristics (Cont'd)

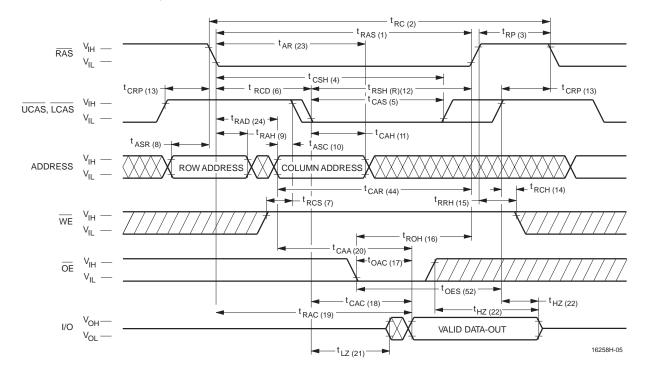
# Symbol Parameter Min. Max. Unite Notes 30 twccc Write Command Hold Time from RAS 40 ns					60		
1	#	Symbol	Parameter	Min.	Max.	Unit	Notes
14	30	t _{WCR}	Write Command Hold Time from RAS	40		ns	
33 Toh Data in Hold Time 7	31	t _{RWL}	Write Command to RAS Lead Time	14		ns	
34 t _{WOH} Write to ØE Hold Time 8 ns 14 35 t _{OED} ÖE to Data Delay Time 8 ns 14 36 t _{RWC} Read-Modify-Write Cycle Time 130 ns 14 37 t _{RRW} Read-Modify-Write Cycle RAS Pulse Width 87 ns 12 38 t _{CWD} CAS to WE Delay in Read-Modify-Write Cycle 68 ns 12 40 t _{CRW} CAS Pulse Width (RMW) 52 ns 12 41 t _{AWD} Col. Address to WE Delay 42 ns 12 41 t _{AWD} Col. Address to WE Delay 42 ns 12 42 t _{PC} EDO Fast Page Mode Read or Write Cycle Time 7 ns 12 42 t _{PC} CAS Precharge Time 7 ns 7 44 t _{CAR} Column Address to RAS Setup Time 24 ns 7 45 t _{CAR} Access Time from Column Precharge 27 ns 7	32	t _{DS}	Data in Setup Time	0		ns	14
35 10ED OE to Data Delay Time 8	33	t _{DH}	Data in Hold Time	7		ns	14
36 RawC Read-Modify-Write Cycle RAS Pulse Width 130 ns 37 t _{RRW} Read-Modify-Write Cycle RAS Pulse Width 87 ns 38 t _{CWD} CAS to WE Delay 34 ns 12 39 t _{RWD} RAS to WE Delay in Read-Modify-Write Cycle 68 ns 12 40 t _{CRW} CAS Pulse Width (RMW) 52 ns 12 40 t _{CRW} CAS Pulse Width (RMW) 52 ns 12 41 t _{AWD} COI. Address to WE Delay 42 ns 12 42 t _{PC} EDO Fast Page Mode Read or Write Cycle Time 19 ns 12 43 t _{CP} CAS Precharge Time 7 ns 7 ns 44 t _{CAR} Column Address to RAS Setup Time 24 ns 7 45 t _{CAP} Access Time from Column Precharge 27 ns 7 45 t _{CAP} Access Time from Column Precharge 10 ns 1 <td< td=""><td>34</td><td>t_{WOH}</td><td>Write to OE Hold Time</td><td>8</td><td></td><td>ns</td><td>14</td></td<>	34	t _{WOH}	Write to OE Hold Time	8		ns	14
37	35	t _{OED}	OE to Data Delay Time	8		ns	14
Pulse Width	36	t _{RWC}	Read-Modify-Write Cycle Time	130		ns	
39 I _{RWD} RAS to WE Delay in Read-Modify-Write Cycle 68 ns 12 40 t _{CRW} CAS Pulse Width (RMW) 52 ns 41 t _{AWD} Col. Address to WE Delay 42 ns 12 41 t _{AWD} Col. Address to WE Delay 42 ns 12 42 t _{PC} EDO Fast Page Mode Read or Write Cycle Time 19 ns 43 t _{CP} CAS Precharge Time 7 ns 44 t _{CAR} Column Address to RAS Setup Time 24 ns 45 t _{CAP} Access Time from Column Precharge 27 ns 7 45 t _{CAP} Access Time from Column Precharge 27 ns 7 46 t _{DHR} Data in Hold Time Referenced to RAS 40 ns 4 47 t _{CSR} CAS Setup Time CAS-before-RAS Refresh 10 ns 1 48 t _{RPC} RAS to CAS Precharge Time 0 ns 1 50 t _{CHR} CAS Hold	37	t _{RRW}		87		ns	
Modify-Write Cycle Modify-Write Cycle 40 t _{CRW} CAS Pulse Width (RMW) 52 ns 41 t _{AWD} Col. Address to WE Delay 42 ns 12 42 t _{PC} EDO Fast Page Mode Read or Write Cycle Time 19 ns 19 ns 43 t _{CP} CAS Precharge Time 7 ns 1 19 ns 10 <td>38</td> <td>t_{CWD}</td> <td>CAS to WE Delay</td> <td>34</td> <td></td> <td>ns</td> <td>12</td>	38	t _{CWD}	CAS to WE Delay	34		ns	12
41 t _{AWD} Col. Address to WE Delay 42 ns 12 42 t _{PC} EDO Fast Page Mode Read or Write Cycle Time 19 ns 43 t _{CP} CAS Precharge Time 7 ns 44 t _{CAR} Column Address to RAS Setup Time 24 ns 45 t _{CAP} Access Time from Column Precharge 27 ns 7 46 t _{DHR} Data in Hold Time Referenced to RAS 40 ns 44 47 t _{CSR} CAS Setup Time CAS-before-RAS Refresh 10 ns 44 48 t _{RPC} RAS to CAS Precharge Time 0 ns 44 49 t _{CHR} CAS Hold Time CAS-before-RAS Refresh 12 ns 45 50 t _{PCM} EDO Page Mode Read-Modify-Write Cycle Time 70 ns 5 51 t _{COH} Output Hold After CAS Low 5 ns 5 ns 52 t _{OES} OE Low to CAS High Setup Time 5 ns 5 ns	39	t _{RWD}	l · · · · · · · · · · · · · · · · · · ·	68		ns	12
42 tpC EDO Fast Page Mode Read or Write Cycle Time 19 ns 43 tcP CAS Precharge Time 7 ns 44 tcAR Column Address to RAS Setup Time 24 ns 45 tcAP Access Time from Column Precharge 27 ns 7 46 tDHR Data in Hold Time Referenced to RAS 40 ns 47 47 tcSR CAS Setup Time CAS-before-RAS Refresh 10 ns 48 48 t_RPC RAS to CAS Precharge Time 0 ns 49 tcHR CAS Hold Time CAS-before-RAS Refresh 12 ns 5	40	t _{CRW}	CAS Pulse Width (RMW)	52		ns	
Write Cycle Time 7 ns 43 t _{CP} CAS Precharge Time 7 ns 44 t _{CAR} Column Address to RAS Setup Time 24 ns 45 t _{CAP} Access Time from Column Precharge 27 ns 7 46 t _{DHR} Data in Hold Time Referenced to RAS 40 ns 40 ns 47 t _{CSR} CAS Setup Time CAS-before-RAS Refresh 10 ns 10 ns 48 t _{RPC} RAS to CAS Precharge Time 0 ns 12 ns 49 t _{CHR} CAS Hold Time CAS-before-RAS Refresh 12 ns 12 ns 50 t _{PCM} EDO Page Mode Read-Modify-Write Cycle Time 70 ns 5 ns 51 t _{COH} Output Hold After CAS Low 5 ns 5 ns 52 t _{OES} OE Low to CAS High Setup Time 5 ns 5 ns 53 t _{OEH} OE Hold Time from WE during Read-Modify Write Cycle 10 <td>41</td> <td>t_{AWD}</td> <td>Col. Address to WE Delay</td> <td>42</td> <td></td> <td>ns</td> <td>12</td>	41	t _{AWD}	Col. Address to WE Delay	42		ns	12
44 t _{CAR} Column Address to RAS Setup Time 24 ns 45 t _{CAP} Access Time from Column Precharge 27 ns 7 46 t _{DHR} Data in Hold Time Referenced to RAS 40 ns 47 t _{CSR} CAS Setup Time CAS-before-RAS Refresh 10 ns 48 t _{RPC} RAS to CAS Precharge Time 0 ns 49 t _{CHR} CAS Hold Time CAS-before-RAS Refresh 12 ns 50 t _{PCM} EDO Page Mode Read-Modify-Write Cycle Time 70 ns 51 t _{COH} Output Hold After CAS Low 5 ns 52 t _{OES} OE Low to CAS High Setup Time 5 ns 53 t _{OEH} OE Hold Time from WE during Read-Modify Write Cycle 10 ns 54 t _{OEP} OE High Pulse Width 10 ns 55 t _T Transition Time (Rise and Fall) 1.5 50 ns 15	42	t _{PC}		19		ns	
45 t _{CAP} Access Time from Column Precharge 27 ns 7 46 t _{DHR} Data in Hold Time Referenced to RAS 40 ns 47 t _{CSR} CAS Setup Time CAS-before-RAS Refresh 10 ns 48 t _{RPC} RAS to CAS Precharge Time 0 ns 49 t _{CHR} CAS Hold Time CAS-before-RAS Refresh 12 ns 50 t _{PCM} EDO Page Mode Read-Modify-Write Cycle Time 70 ns 51 t _{COH} Output Hold After CAS Low 5 ns 52 t _{OES} OE Low to CAS High Setup Time 5 ns 53 t _{OEH} OE Hold Time from WE during Read-Modify Write Cycle 10 ns 54 t _{OEP} OE High Pulse Width 10 ns 55 t _T Transition Time (Rise and Fall) 1.5 50 ns 15	43	t _{CP}	CAS Precharge Time	7		ns	
46 t _{DHR} Data in Hold Time Referenced to RAS 40 ns 47 t _{CSR} CAS Setup Time CAS-before-RAS Refresh 10 ns 48 t _{RPC} RAS to CAS Precharge Time 0 ns 49 t _{CHR} CAS Hold Time CAS-before-RAS Refresh 12 ns 50 t _{PCM} EDO Page Mode Read-Modify-Write Cycle Time 70 ns 51 t _{COH} Output Hold After CAS Low 5 ns 52 t _{OES} OE Low to CAS High Setup Time 5 ns 53 t _{OEH} OE Hold Time from WE during Read-Modify Write Cycle 10 ns 54 t _{OEP} OE High Pulse Width 10 ns 55 t _T Transition Time (Rise and Fall) 1.5 50 ns 15	44	t _{CAR}	Column Address to RAS Setup Time	24		ns	
47 t _{CSR} CAS Setup Time CAS-before-RAS Refresh 10 ns 48 t _{RPC} RAS to CAS Precharge Time 0 ns 49 t _{CHR} CAS Hold Time CAS-before-RAS Refresh 12 ns 50 t _{PCM} EDO Page Mode Read-Modify-Write Cycle Time 70 ns 51 t _{COH} Output Hold After CAS Low 5 ns 52 t _{OES} OE Low to CAS High Setup Time 5 ns 53 t _{OEH} OE Hold Time from WE during Read-Modify Write Cycle 10 ns 54 t _{OEP} OE High Pulse Width 10 ns 55 t _T Transition Time (Rise and Fall) 1.5 50 ns 15	45	t _{CAP}			27	ns	7
RAS Refresh 0 ns 48 t _{RPC} RAS to CAS Precharge Time 0 ns 49 t _{CHR} CAS Hold Time CAS-before-RAS Refresh 12 ns 50 t _{PCM} EDO Page Mode Read-Modify-Write Cycle Time 70 ns 51 t _{COH} Output Hold After CAS Low 5 ns 52 t _{OES} OE Low to CAS High Setup Time 5 ns 53 t _{OEH} OE Hold Time from WE during Read-Modify Write Cycle 10 ns 54 t _{OEP} OE High Pulse Width 10 ns 55 t _T Transition Time (Rise and Fall) 1.5 50 ns	46	t _{DHR}	Data in Hold Time Referenced to RAS	40		ns	
49 t _{CHR} CAS Hold Time CAS-before-RAS Refresh 12 ns 50 t _{PCM} EDO Page Mode Read-Modify-Write Cycle Time 70 ns 51 t _{COH} Output Hold After CAS Low 5 ns 52 t _{OES} OE Low to CAS High Setup Time 5 ns 53 t _{OEH} OE Hold Time from WE during Read-Modify Write Cycle 10 ns 54 t _{OEP} OE High Pulse Width 10 ns 55 t _T Transition Time (Rise and Fall) 1.5 50 ns	47	t _{CSR}		10		ns	
TRAS Refresh 70 ns 50 t _{PCM} EDO Page Mode Read-Modify-Write Cycle Time 70 ns 51 t _{COH} Output Hold After CAS Low 5 ns 52 t _{OES} OE Low to CAS High Setup Time 5 ns 53 t _{OEH} OE Hold Time from WE during Read-Modify Write Cycle 10 ns 54 t _{OEP} OE High Pulse Width 10 ns 55 t _T Transition Time (Rise and Fall) 1.5 50 ns	48	t _{RPC}	RAS to CAS Precharge Time	0		ns	
Read-Modify-Write Cycle Time 51 t _{COH} Output Hold After CAS Low 5 ns 52 t _{OES} OE Low to CAS High Setup Time 5 ns 53 t _{OEH} OE Hold Time from WE during Read-Modify Write Cycle 10 ns 54 t _{OEP} OE High Pulse Width 10 ns 55 t _T Transition Time (Rise and Fall) 1.5 50 ns 15	49	t _{CHR}		12		ns	
52 t _{OES} OE Low to CAS High Setup Time 5 ns 53 t _{OEH} OE Hold Time from WE during Read-Modify Write Cycle 10 ns 54 t _{OEP} OE High Pulse Width 10 ns 55 t _T Transition Time (Rise and Fall) 1.5 50 ns 15	50	t _{PCM}		70		ns	
53 t _{OEH} OE Hold Time from WE during Read-Modify Write Cycle 10 ns 54 t _{OEP} OE High Pulse Width 10 ns 55 t _T Transition Time (Rise and Fall) 1.5 50 ns 15	51	t _{COH}	Output Hold After CAS Low	5		ns	
54 t _{OEP} OE High Pulse Width 10 ns 55 t _T Transition Time (Rise and Fall) 1.5 50 ns 15	52	t _{OES}	OE Low to CAS High Setup Time	5		ns	
55 t _T Transition Time (Rise and Fall) 1.5 50 ns 15	53	t _{OEH}		10		ns	
	54	t _{OEP}	OE High Pulse Width	10		ns	
56 t _{REF} Refresh Interval (512 Cycles) 8 ms 17	55	t _T	Transition Time (Rise and Fall)	1.5	50	ns	15
	56	t _{REF}	Refresh Interval (512 Cycles)		8	ms	17

AC Characteristics (Cont'd)

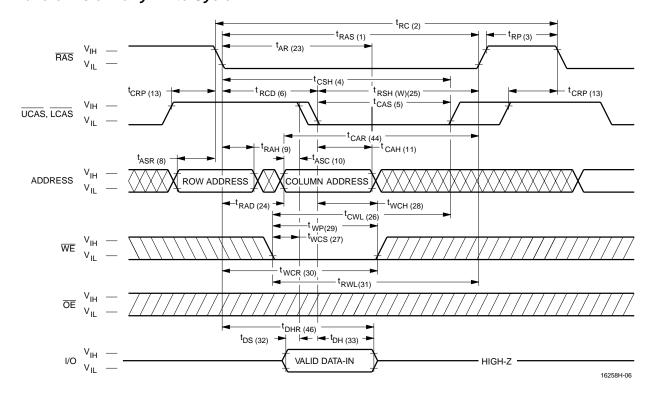
			5	0			
#	Symbol	Parameter	Min.	Max.	Unit	Notes	
Self	Self Refresh						
57	t _{RASS}	RAS Pulse Width During Self Refresh	100		μS	18	
58	t _{RPS}	RAS Precharge Time During Self Refresh	100		ns	18	
59	t _{CHS}	CAS Hold Time Width During Self Refresh	100		ns	18	
60	t _{CHD}	CAS Low Time During Self Refresh	100		μS	18	

Notes:

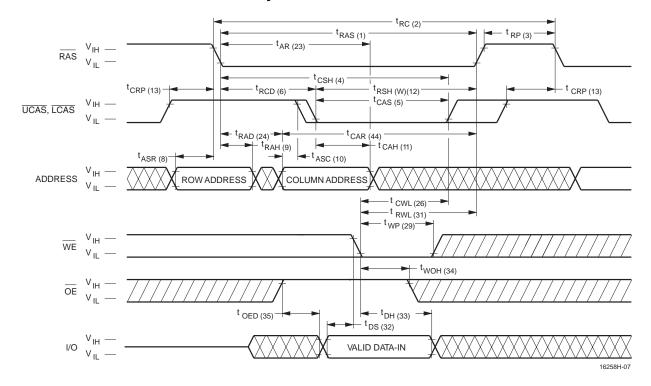
- I_{CC} is dependent on output loading when the device output is selected. Specified I_{CC} (max.) is measured with the output open.
- I_{CC} is dependent upon the number of address transitions. Specified I_{CC} (max.) is measured with a maximum of two transitions per address cycle in EDO Page Mode.
- 3. Specified V_{IL} (min.) is steady state operating. During transitions, V_{IL} (min.) may undershoot to -1.0 V for a period not to exceed 20 ns. All AC parameters are measured with V_{IL} (min.) $\geq V_{SS}$ and V_{IH} (max.) $\leq V_{CC}$.
- t_{RCD} (max.) is specified for reference only. Operation within t_{RCD} (max.) limits insures that t_{RAC} (max.) and t_{CAA} (max.) can be met. If t_{RCD} is greater than the specified t_{RCD} (max.), the access time is controlled by t_{CAA} and t_{CAC}.
- 5. Either t_{RRH} or t_{RCH} must be satisified for a Read Cycle to occur.
- 6. Measured with a load equivalent to one TTL input and 50 pF.
- 7. Access time is determined by the longest of t_{CAA}, t_{CAC} and t_{CAP}.
- Assumes that t_{RAD} ≤ t_{RAD} (max.). If t_{RAD} is greater than t_{RAD} (max.), t_{RAC} will increase by the amount that t_{RAD} exceeds t_{RAD} (max.).
- 9. Assumes that $t_{RCD} \le t_{RCD}$ (max.). If t_{RCD} is greater than t_{RCD} (max.), t_{RAC} will increase by the amount that t_{RCD} exceeds t_{RCD} (max.).
- 10. Assumes that $t_{RAD} \ge t_{RAD}$ (max.).
- 11. Operation within the t_{RAD} (max.) limit ensures that t_{RAC} (max.) can be met. t_{RAD} (max.) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD} (max.) limit, the access time is controlled by t_{CAA} and t_{CAC}.
- 12. t_{WCS}, t_{RWD}, t_{AWD} and t_{CWD} are not restrictive operating parameters.
- 13. t_{WCS} (min.) must be satisfied in an Early Write Cycle.
- 14. t_{DS} and t_{DH} are referenced to the latter occurrence of \overline{CAS} or \overline{WE} .
- 15. t_T is measured between V_{IH} (min.) and V_{IL} (max.). AC-measurements assume $t_T = 3$ ns.
- 16. Assumes a three-state test load (5 pF and a 500 Ohm Thevenin equivalent).
- 17. An initial 200 μs pause and 8 RAS-containing cycles are required when exiting an extended period of bias without clocks. An extended period of time without clocks is defined as one that exceeds the specified Refresh Interval.
- 18. One CBR refresh or complete set of row refresh cycles must be completed upon existing Self Refresh Mode.

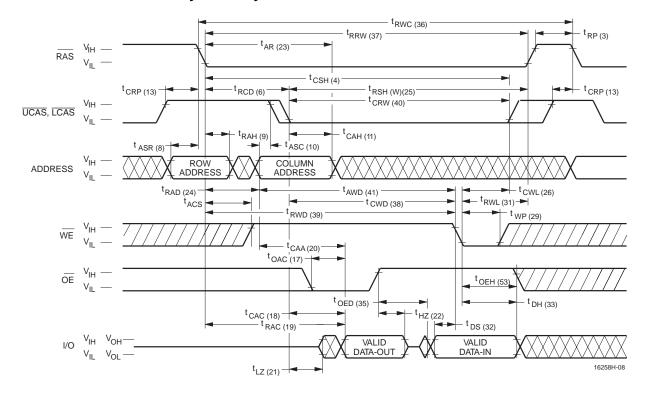

Truth Table

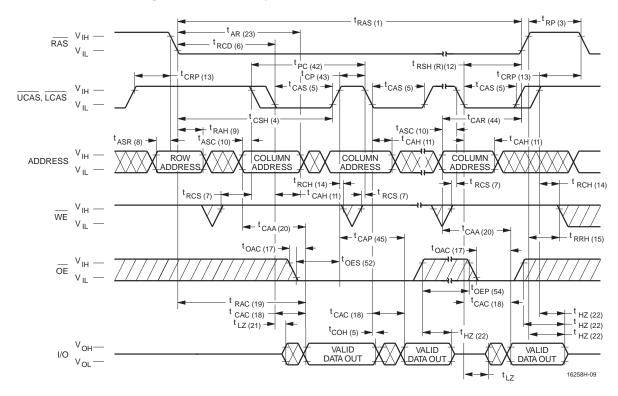
Function	RAS	LCAS	UCAS	WE	ŌĒ	ADDRESS	1/0	Notes
Standby	Н	Н	Н	Х	Х	Х	High-Z	
Read: Word	L	L	L	Н	L	ROW/COL	Data Out	
Read: Lower Byte	L	L	Н	Н	L	ROW/COL	Lower Byte, Data-Out Upper Byte, High-Z	
Read: Upper Byte	L	Н	L	Н	L	ROW/COL	Lower Byte, High-Z Upper Byte, Data-Out	
Write: Word (Early-Write)	L	L	L	L	Х	ROW/COL	Data-In	
Write: Lower Byte (Early)	L	L	Н	L	Х	ROW/COL	Lower Byte, Data-In Upper Byte, High-Z	
Read: Upper Byte (Early)	L	Н	L	L	Х	ROW/COL	Lower Byte, High-Z Upper Byte, Data-In	
Read-Write	L	L	L	H→L	L→H	ROW/COL	Data-Out, Data-In	1, 2
EDO Page-Mode Read	L	H→L	H→L	Н	L	COL	Data-Out	2
EDO Page-Mode Write	L	H→L	H→L	L	Х	COL	Data-In	2
EDO Page-Mode Read-Write	L	H→L	H→L	H→L	L→H	COL	Data-Out, Data-In	1, 2
Hidden Refresh Read	L→H→L	L	L	Н	L	ROW/COL	Data-Out	2
RAS-Only Refresh	L	Н	Н	Х	Х	ROW	High-Z	
CBR Refresh	H→L	L	L	Х	Х	Х	High-Z	3
Self Refresh	H→L	L	L	Х	Х	Х	High-Z	

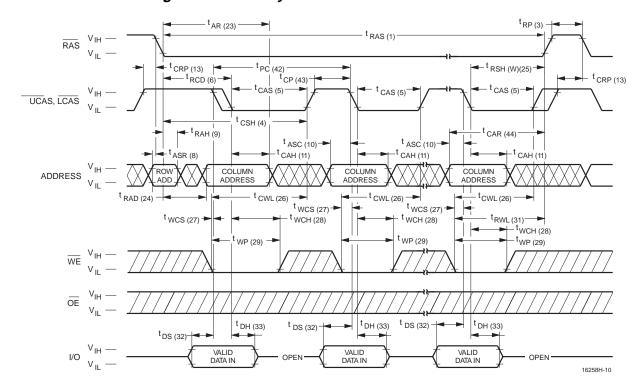

Notes:

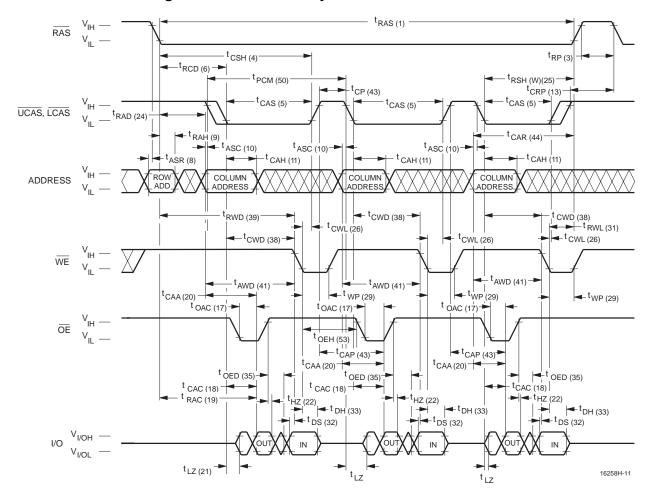
- 1. Byte Write cycles <u>LCAS</u> or <u>UCAS</u> active.
- 2. Byte Read cycles $\overline{\text{LCAS}}$ or $\overline{\text{UCAS}}$ active.
- 3. Only one of the two $\overline{\text{CAS}}$ must be active ($\overline{\text{LCAS}}$ or $\overline{\text{UCAS}}$).

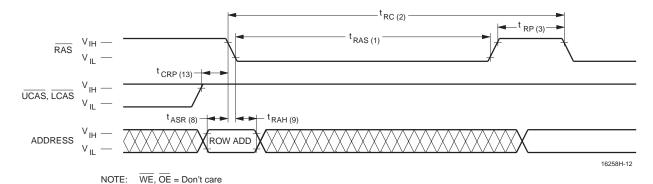

Waveforms of Read Cycle

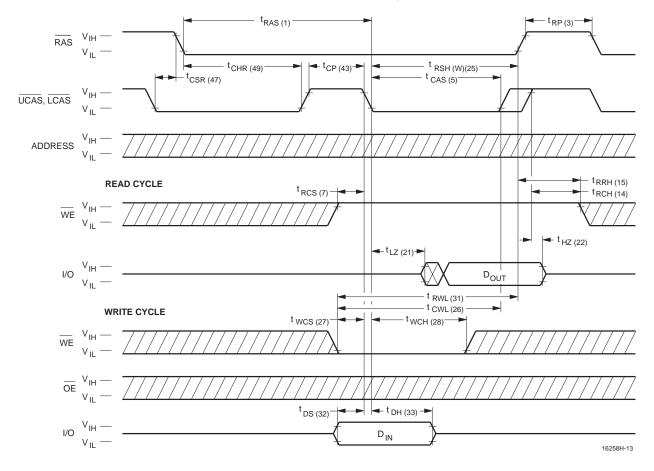

Waveforms of Early Write Cycle

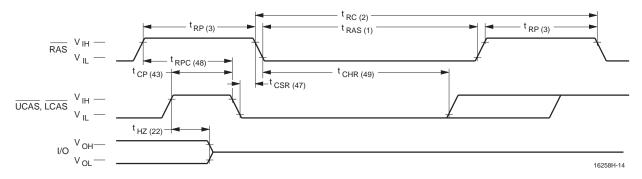

Waveforms of OE-Controlled Write Cycle


Waveforms of Read-Modify-Write Cycle

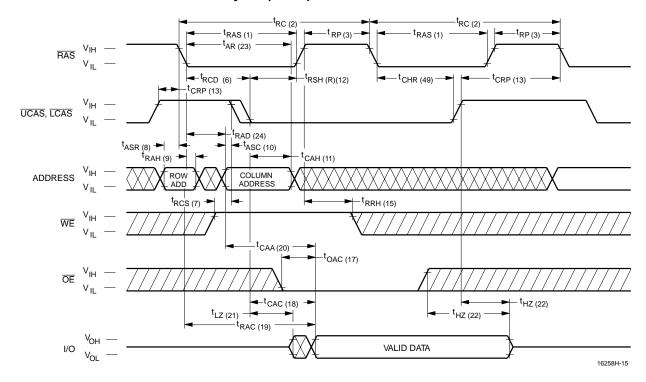

Waveforms of EDO Page Mode Read Cycle


Waveforms of EDO Page Mode Write Cycle

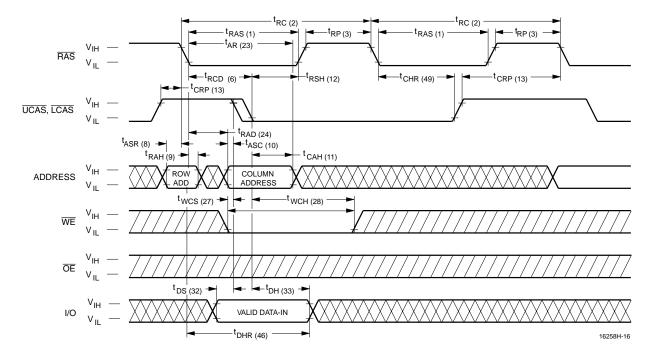

Waveforms of EDO Page Mode Read-Write Cycle


Waveforms of RAS-Only Refresh Cycle

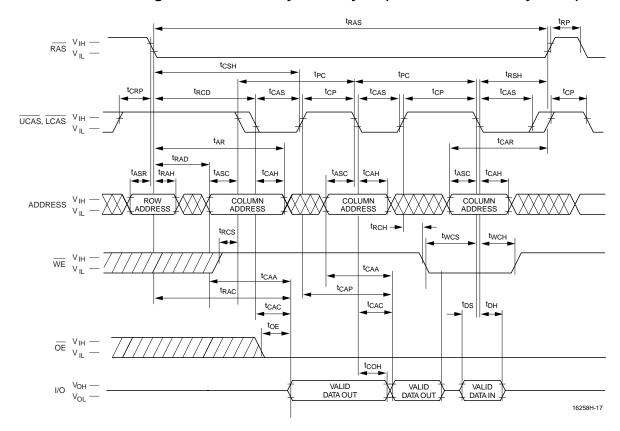
Waveforms of CAS-before-RAS Refresh Counter Test Cycle

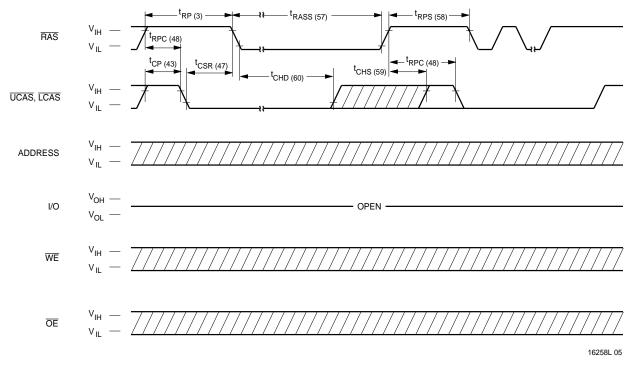


Waveforms of CAS-before-RAS Refresh Cycle



NOTE: \overline{WE} , \overline{OE} , A_0 - A_8 = Don't care


Waveforms of Hidden Refresh Cycle (Read)


Waveforms of Hidden Refresh Cycle (Write)

Waveforms of EDO-Page-Mode Read-Early-Write Cycle (Pseudo Read-Modify-Write)

Waveforms of Self Refresh Cycle

Functional Description

The V53C16258SH is a CMOS dynamic RAM optimized for high data bandwidth, low power applications. It is functionally similar to a traditional dynamic RAM. The V53C16258SH reads and writes data by multiplexing an 18-bit address into a 9-bit row and a 9-bit column address. The row address is latched by the Row Address Strobe (\overline{RAS}). The column address "flows through" an internal address buffer and is latched by the Column Address Strobe (\overline{CAS}). Because access time is primarily dependent on a valid column address rather than the precise time that the \overline{CAS} edge occurs, the delay time from \overline{RAS} to \overline{CAS} has little effect on the access time.

Memory Cycle

A memory cycle is initiated by bringing \overline{RAS} low. Any memory cycle, once initiated, must not be ended or aborted before the minimum t_{RAS} time has expired. This ensures proper device operation and data integrity. A new cycle must not be initiated until the minimum precharge time t_{RP}/t_{CP} has elapsed.

Read Cycle

A Read cycle is performed by holding the Write Enable ($\overline{\text{WE}}$) signal High during a $\overline{\text{RAS}}/\overline{\text{CAS}}$ operation. The column address must be held for a minimum specified by t_{AR} . Data Out becomes valid only when t_{OAC} , t_{RAC} , t_{CAA} and t_{CAC} are all satisifed. As a result, the access time is dependent on the timing relationships between these parameters. For example, the access time is limited by t_{CAA} when t_{RAC} , t_{CAC} and t_{OAC} are all satisfied.

Write Cvcle

A Write Cycle is performed by taking $\overline{\text{WE}}$ and $\overline{\text{CAS}}$ low during a $\overline{\text{RAS}}$ operation. The column address is latched by $\overline{\text{CAS}}$. The Write Cycle can be $\overline{\text{WE}}$ controlled or $\overline{\text{CAS}}$ controlled depending on whether $\overline{\text{WE}}$ or $\overline{\text{CAS}}$ falls later. Consequently, the input data must be valid at or before the falling edge of $\overline{\text{WE}}$ or $\overline{\text{CAS}}$, whichever occurs last. In the $\overline{\text{CAS}}$ -controlled Write Cycle, when the leading edge of $\overline{\text{WE}}$ occurs prior to the $\overline{\text{CAS}}$ low transition, the I/O data pins will be in the High-Z state at the beginning of the Write function. Ending the Write with $\overline{\text{RAS}}$ or $\overline{\text{CAS}}$ will maintain the output in the High-Z state.

In the $\overline{\text{WE}}$ controlled Write Cycle, $\overline{\text{OE}}$ must be in the high state and t_{OED} must be satisfied.

Extended Data Output Page Mode

EDO Page operation permits all 512 columns within a selected row of the device to be randomly accessed at a high data rate. Maintaining RAS low while performing successive CAS cycles retains the row address internally and eliminates the need to reapply it for each cycle. The column address buffer acts as a transparent or flow-through latch while CAS is high. Thus, access begins from the occurrence of a valid column address rather than from the falling edge of \overline{CAS} , eliminating t_{ASC} and t_{T} from the critical timing path. CAS latches the address into the column address buffer. During EDO operation, Read, Write, Read-Modify-Write or Read-Write-Read cycles are possible at random addresses within a row. Following the initial entry cycle into Hyper Page Mode, access is t_{CAA} or t_{CAP} controlled. If the column address is valid prior to the rising edge of CAS, the access time is referenced to the CAS rising edge and is specified by t_{CAP}. If the column address is valid after the rising CAS edge, access is timed from the occurrence of a valid address and is specified by t_{CAA}. In both cases, the falling edge of CAS latches the address and enables the output.

EDO provides a sustained data rate of 83 MHz for applications that require high bandwidth such as bit-mapped graphics or high-speed signal processing. The following equation can be used to calculate the maximum data rate:

Data Rate =
$$\frac{512}{t_{RC} + 511 \times t_{PC}}$$

Self Refresh

Self Refresh mode provides internal refresh control signals to the DRAM during extended periods of inactivity. Device operation in this mode provides additional power savings and design ease by elimination of external refresh control signals. Self Refresh mode is initiated with a $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ (CBR) Refresh cycle, holding both $\overline{\text{RAS}}$ low (t_{RASS}) and $\overline{\text{CAS}}$ low (t_{CHD}) for a specified period. Both of these parameters are specified with minimum values to guarantee entry into Self Refresh operation. Once the device has been placed in to Self Refresh mode the $\overline{\text{CAS}}$ clock is no longer required to maintain Self Refresh operation.

17

The Self Refresh mode is terminated by returning the \overline{RAS} clock to a high level for a specified (t_{RPS}) minimum time. After termination of the Self Refresh cycle normal accesses to the device may be initiated immediately, providing that subsequent refresh cycles utilize the \overline{CAS} before \overline{RAS} (CBR) mode of operation.

Data Output Operation

The V53C16258SH Input/Output is controlled by OE, CAS, WE and RAS. A RAS low transition enables the transfer of data to and from the selected row address in the Memory Array. A RAS high transition disables data transfer and latches the output data if the output is enabled. After a memory cycle is initiated with a RAS low transition, a CAS low transition or CAS low level enables the internal I/O path. A CAS high transition or a CAS high level disables the I/O path and the output driver if it is enabled. A \overline{CAS} low transition while \overline{RAS} is high has no effect on the I/O data path or on the output drivers. The output drivers, when otherwise enabled, can be disabled by holding \overline{OE} high. The OE signal has no effect on any data stored in the output latches. A WE low level can also disable the output drivers when CAS is low. During a Write cycle, if WE goes low at a time in relationship to CAS that would normally cause the outputs to be active, it is necessary to use \overline{OE} to disable the output drivers prior to the WE low transition to allow Data In Setup Time (t_{DS}) to be satisfied.

Power-On

After application of the V_{CC} supply, an initial pause of 200 μs is required followed by a minimum of 8 initialization cycles (any combination of cycles containing a \overline{RAS} clock). Eight initialization cycles are required after extended periods of bias without clocks (greater than the Refresh Interval).

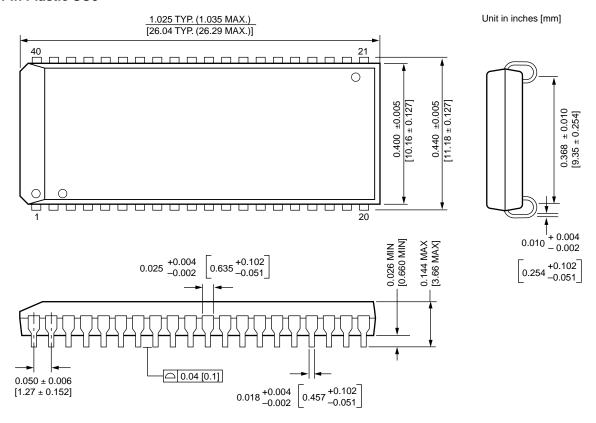
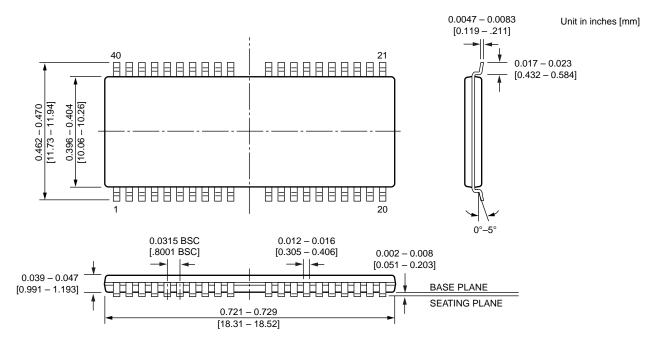

During Power-On, the V $_{CC}$ current requirement of the V53C16258SH is dependent on the input levels of \overline{RAS} and \overline{CAS} . If \overline{RAS} is low during Power-On, the device will go into an active cycle and I $_{CC}$ will exhibit current transients. It is recommended that \overline{RAS} and \overline{CAS} track with V $_{CC}$ or be held at a valid V $_{IH}$ during Power-On to avoid current surges.

Table 1. V53C16258SH Data OutputOperation for Various Cycle Types


Cycle Type	I/O State
Read Cycles	Data from Addressed Memory Cell
CAS-Controlled Write Cycle (Early Write)	High-Z
WE-Controlled Write Cycle (Late Write)	OE Controlled. High OE = High-Z I/Os
Read-Modify-Write Cycles	Data from Addressed Memory Cell
EDO Read Cycle	Data from Addressed Memory Cell
EDO Write Cycle (Early Write)	High-Z
EDO Read-Modify- Write Cycle	Data from Addressed Memory Cell
RAS-only Refresh	High-Z
CAS-before-RAS Refresh Cycle	Data remains as in previous cycle
CAS-only Cycles	High-Z

Package Outlines

40-Pin Plastic SOJ

40/44L-Pin TSOP-II

V53C16258SH

Notes

WORLDWIDE OFFICES

V53C16258SH

U.S.A.

3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0185

HONG KONG

19 DAI FU STREET TAIPO INDUSTRIAL ESTATE TAIPO, NT, HONG KONG PHONE: 852-2665-4883 FAX: 852-2664-7535

TAIWAN

7F, NO. 102 MIN-CHUAN E. ROAD, SEC. 3 TAIPEI

PHONE: 886-2-2545-1213 FAX: 886-2-2545-1209

1 CREATION ROAD I SCIENCE BASED IND. PARK HSIN CHU, TAIWAN, R.O.C. PHONE: 886-3-578-3344 FAX: 886-3-579-2838

JAPAN

WBG MARINE WEST 25F 6, NAKASE 2-CHOME MIHAMA-KU, CHIBA-SHI CHIBA 261-71

PHONE: 81-43-299-6000 FAX: 81-43-299-6555

IRELAND & UK

BLOCK A UNIT 2 BROOMFIELD BUSINESS PARK MALAHIDE

CO. DUBLIN, IRELAND PHONE: +353 1 8038020 FAX: +353 1 8038049

GERMANY (CONTINENTAL EUROPE & ISRAEL)

71083 HERRENBERG BENZSTR. 32 GERMANY

PHONE: +49 7032 2796-0 FAX: +49 7032 2796 22

U.S. SALES OFFICES

NORTHWESTERN

3910 NORTH FIRST STREET SAN JOSE, CA 95134 PHONE: 408-433-6000 FAX: 408-433-0185

NORTHEASTERN

SUITE 436 20 TRAFALGAR SQUARE NASHUA, NH 03063 PHONE: 603-889-4393 FAX: 603-889-9347

SOUTHWESTERN

SUITE 200 5150 E. PACIFIC COAST HWY. LONG BEACH, CA 90804 PHONE: 562-498-3314 FAX: 562-597-2174

CENTRAL & SOUTHEASTERN

604 FIELDWOOD CIRCLE RICHARDSON, TX 75081 PHONE: 972-690-1402 FAX: 972-690-0341

© Copyright 1998, MOSEL VITELIC Inc.

9/98 Printed in U.S.A.

The information in this document is subject to change without notice.

MOSEL VITELIC makes no commitment to update or keep current the information contained in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of MOSEL-VITELIC.

MOSEL VITELIC subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications. MOSEL VITELIC does not do testing appropriate to provide 100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which personal injury might occur from failure, purchaser must do its own quality assurance testing appropriate to such applications.