DATA SHEET

MOS INTEGRATED CIRCUIT $\mu PD16886$

MONOLITHIC 1.5-CHANNEL H BRIDGE DRIVER CIRCUIT FOR CAMERAS

DESCRIPTION

The μ PD16886 is a monolithic H bridge driver LSI that employs N-channel MOSFETs in its output stage.

This IC incorporates a 1.5-channel H bridge circuit and can control two motors that do not operate at the same time. In addition, forward/reverse, brake, and stop functions are available, making this LSI ideal for driving motors such as the motor for winding the camera film and the lens zoom motor.

FEATURES

O Large output current $I_{D(DC)} = 1.0 \text{ A}$ During continuous operation

 $I_{D(pulse)} = 2.8 \text{ A}$ PW $\leq 20 \text{ ms}$, during single operation $I_{D(pulse)} = 2.2 \text{ A}$ PW $\leq 200 \text{ ms}$, during single operation

O On-chip 1.5-channel H bridge circuit

O Low on-resistance Ron = 0.5Ω max. Sum of the top and bottom on-resistance, total temperature range

O On-chip standby circuit to set the charge pump circuit to OFF

O Low-voltage operation is possible (operable at 2.7 V or higher)

O On-chip undervoltage lockout circuit

O Mounted in a small-scale package 24-pin plastic TSSOP

ORDERING INFORMATION

Part Number	Package
μPD16886MA-6A5	24-pin plastic TSSOP (5.72 mm (225))

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

ABSOLUTE MAXIMUM RATINGS

(TA = 25°C: MOUNTED ON GLASS EPOXY BOARD 100 mm × 100 mm × 1 mm, COPPER FILM AREA: 15%)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.5 to +6.0	V
	Vм	When charge pump operating	-0.5 to +4.0	V
		At V _G external input	-0.5 to +6.0	
V _G pin apply voltage	V _G	At V _G external input	8.0	V
Input voltage	VIN		-0.5 to V _{DD} + 0.5	V
Output current (DC)	I _{D(DC)}	During successive operation	±1.0	Α
Output current (pulse)	I _{D(pulse)}	PW < 20 ms, single pulse	±2.8	Α
Output current (pulse)	I _{D(pulse)}	PW < 200 ms, single pulse	±2.2	Α
Power consumption	Рт		0.7	W
Peak junction temperature	T _J (MAX)		150	°C
Storage temperature	T _{stg}		-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

(TA = 25°C: MOUNTED ON GLASS EPOXY BOARD 100 mm × 100 mm × 1 mm, COPPER FILM AREA: 15%)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	V _{DD}		2.7		5.5	٧
	Vм		1.6		3.6	V
V _G pin apply voltage	V _G		V _M + 3.5		7.5	>
Output current (DC)	I _{D(DC)}	During successive operation			0.8	Α
Output current (pulse)	I _{D(pulse)}	PW < 20 ms, single pulse			2.5	Α
Output current (pulse)	I _{D(pulse)}	PW < 200 ms, single pulse			2.0	Α
Charge pump capacitor capacitance	C ₁ to C ₃			0.01		μ F
Operating ambient temperature	TA		-20		+75	°C
Peak junction temperature	T _J (MAX)				125	°C

ELECTRICAL SPECIFICATIONS (UNLESS OTHERWISE SPECIFIED, TA = 25°C, VDD = VM = 3.0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} pin current	IDD	STB = V _{DD}			2.0	mA
	IDD(STB)	STB = GND			1.0	μΑ
Vм pin current in off state	IMOFF	Control pin at low level			1.0	μΑ
Input voltage, high	ViH		1.8		V _{DD}	V
Input voltage, low	VIL				0.8	V
Input pull-down resistor	RIND			200		kΩ
Output on-resistance	Ron	$-20^{\circ}\text{C} \le \text{T}_{\text{A}} \le 75^{\circ}\text{C}$ ID = 0.8 A $\text{C}_1 = \text{C}_2 = \text{C}_3 = 0.01 \ \mu\text{F}$		0.35	0.5	Ω
Low voltage detection voltage	VDDS		0.8		2.5	V
Charge pump circuit turn-on time	tonc	$C_1 = C_2 = C_3 = 0.01 \ \mu F$			1.0	ms
H bridge circuit turn-on time	ton	I _D = 0.8 A, see Figures 1 and 2			5.0	μs
H bridge circuit turn-off time	toff				5.0	μs

The output is high impedance during low-voltage detection.

The V_G pin voltage when using the charge pump is $V_G = V_M + 3.6 \text{ V}$.

Figure 1. Charge Pump Characteristics Waveform

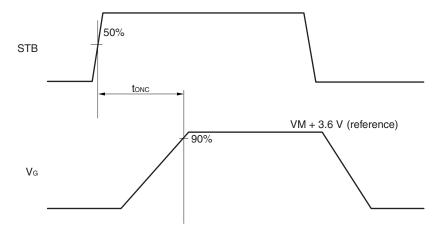
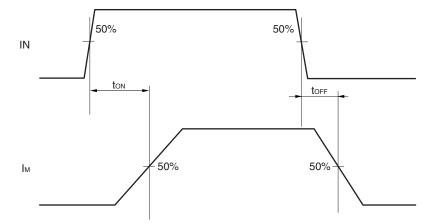
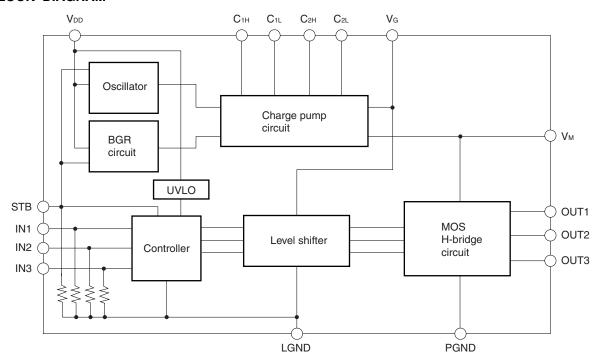
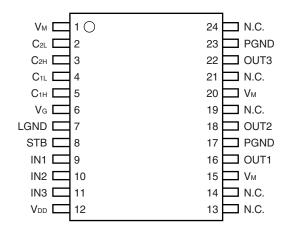
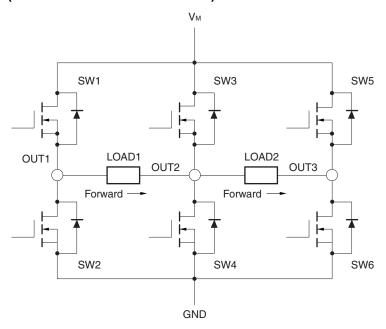




Figure 2. Switching Characteristics Waveform



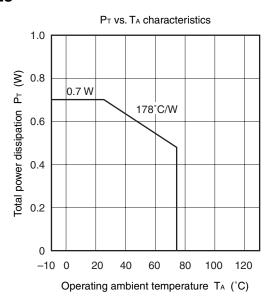
BLOCK DIAGRAM



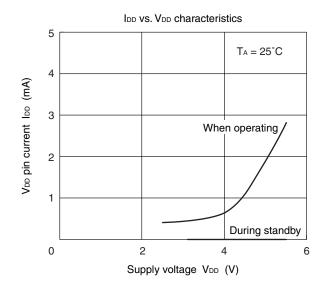
PIN CONFIGURATION

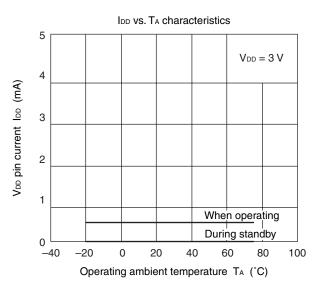
Pin No.	Pin Name	Pin Function	Pin No.	Pin Name	Pin Function
1	Vм	Motor block supply voltage pin	13	N.C.	Unused pin
2	C ₂ L	Charge pump capacitor connection pin	14	N.C.	Unused pin
3	С2Н	Charge pump capacitor connection pin	15	Vм	Motor block supply voltage pin
4	C ₁ L	Charge pump capacitor connection pin	16	OUT1	H bridge output pin
5	С1Н	Charge pump capacitor connection pin	17	PGND	Output block GND pin
6	V G	Gate voltage input pin	18	OUT2	H bridge output pin
7	LGND	Control block GND pin	19	N.C.	Unused pin
8	STB	Standby pin	20	Vм	Motor block supply voltage pin
9	IN1	Input pin	21	N.C.	Unused pin
10	IN2	Input pin	22	OUT3	H bridge output pin
11	IN3	Input pin	23	PGND	Output block GND pin
12	V _{DD}	Control block supply voltage pin	24	N.C.	Unused pin

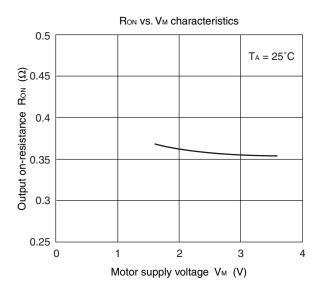
FUNCTION TABLE (OUTPUT BLOCK CONNECTION)

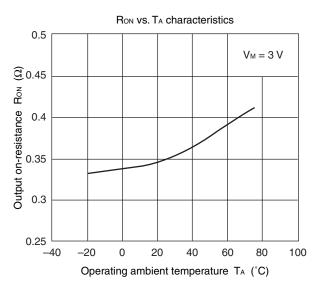


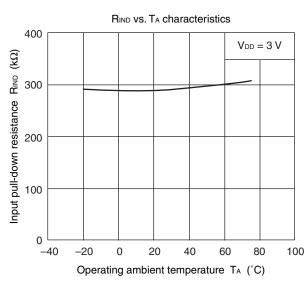
(Truth Table)

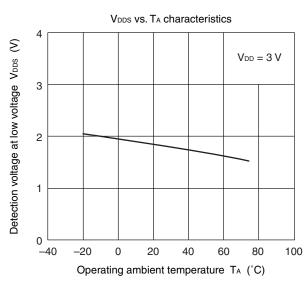

111441114	•.•,				
	Input	Signal		Circuit Operation	Current Pouts
IN1	IN2	IN3	STB	Circuit Operation	Current Route
L	Н	L	Н	1 ch forward	$VM \to OUT1 \to LOAD1 \to OUT2 \to GND$
L	L	Н	Н	1 ch reverse	$VM \to OUT2 \to LOAD1 \to OUT1 \to GND$
L	Н	Н	Н	1 ch brake	Only SW2 and SW4 are on
Н	Н	L	Н	2 ch forward	$VM \to OUT2 \to LOAD2 \to OUT3 \to GND$
Н	L	Н	Н	2 ch reverse	$VM \to OUT3 \to LOAD2 \to OUT2 \to GND$
Н	Н	Н	Н	2 ch brake	Only SW4 and SW6 are on
_	L	L	Н	Stopped	SW1 to SW6 are all off
_	-	-	L	Standby	Charge pump circuit stopped

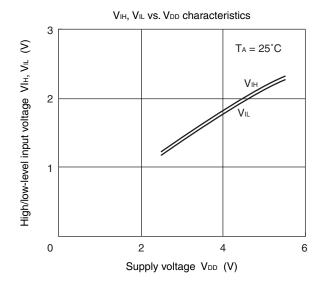

Unused switches (example: SW1 and SW2 at 2 ch driving) are high impedance.

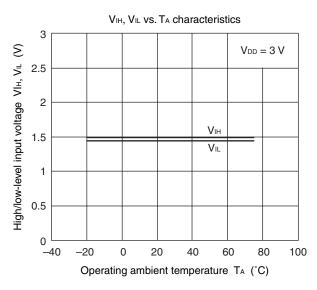

CHARACTERISTICS CURVES

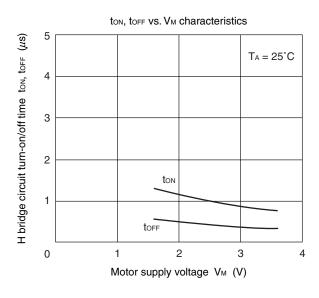


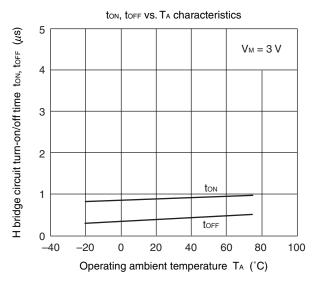

CHARACTERISTICS CURVES

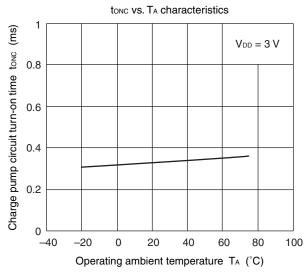


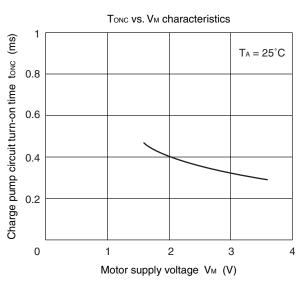


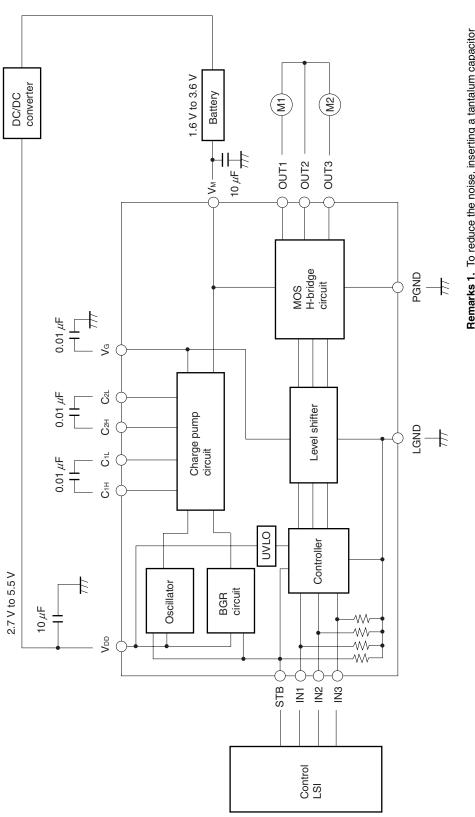




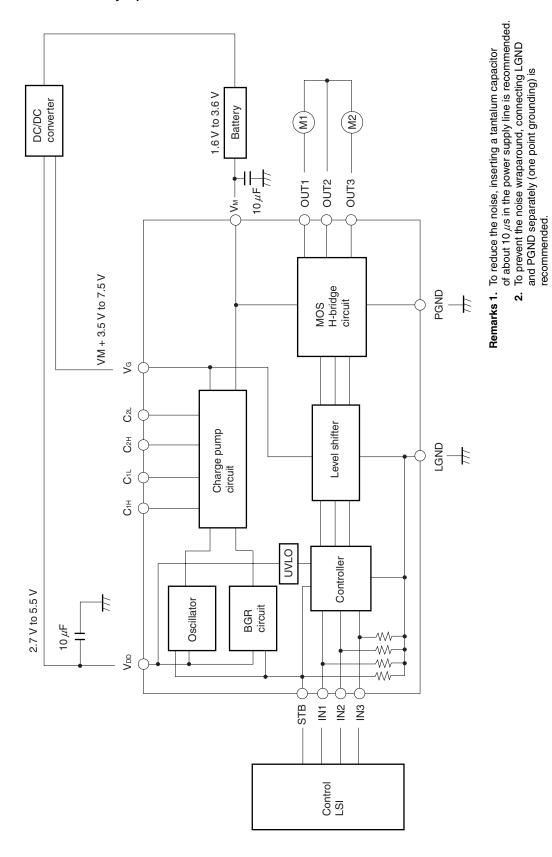



CHARACTERISTICS CURVES

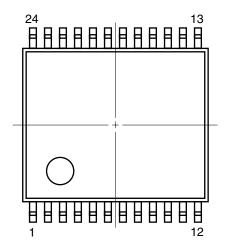




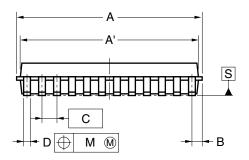
EXAMPLE OF STANDARD CONNECTION

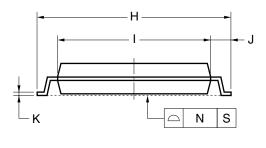

(1) When charge pump used

Remarks 1. To reduce the noise, inserting a tantalum capacitor of about 10 µs in the power supply line is recommended.


2. To prevent the noise wraparound, connecting LGND and PGND separately (one point grounding) is recommended.

(2) When VG is externally input




PACKAGE DRAWING

24-PIN PLASTIC TSSOP (5.72 mm (225))

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	6.65±0.10
A'	6.5±0.1
В	0.575
С	0.5 (T.P.)
D	0.22±0.05
Е	0.1±0.05
F	1.2 MAX.
G	1.0±0.05
Н	6.4±0.1
I	4.4±0.1
J	1.0±0.1
K	0.145±0.025
L	0.5
M	0.10
N	0.08
Р	3°+5°
R	0.25
S	0.6±0.15
	C24MA_E0_6AE

S24MA-50-6A5

RECOMMENDED SOLDERING CONDITIONS

The $\mu PD16886$ should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**. For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Surface Mounting Type Soldering Conditions

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less, Exposure limit: None, Flux: Rosin-based flux with low chlorine content (chlorine 0.2Wt% or below) is recommended	IR35-00-3
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: Three times or less, Exposure limit: None, Flux: Rosin-based flux with low chlorine content (chlorine 0.2Wt% or below) is recommended	VP15-00-3
Wave soldering	Package peak temperature: 260°C, Time: 10 seconds max., Preheating temperature: 120°C or lower, Count: Once, Flux: Rosin-based flux with low chlorine content (chlorine 0.2Wt% or below) is recommended	WS60-00-1

Note Do not use different soldering methods together.

[MEMO]

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of April, 2002. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).