8-ch level shift driver IC

DESCRIPTION

The μ PD160970 is a level shift driver IC for LTPS (low-temperature polysilicon) TFT-LCDs featuring a 2-level output function and incorporates eight on-chip level shifters. This IC realizes a 20 V MAX. withstanding voltage due to a high-withstanding-voltage CMOS process and has an output ON-resistance and switching characteristics ideal for TFT driving in LCD panels.

FEATURES

- High withstanding voltage : 20 V (MAX.)
- Supports low-voltage input (logic power supply voltage : 3.0 to 3.6 V)
- Includes 8 level shifters (among which 2 circuits can switch between normal and inverted output)
- Small thin package : 24-pin plastic TSSOP (5.72 mm (225))

ORDERING INFORMATION

Part Number
Package
μ PD160970MA-6A5 \quad 24-pin plastic TSSOP (5.72 mm (225))

[^0]
1. BLOCK DIAGRAM / PIN CONFIGURATION

- 24-pin plastic TSSOP (5.72 mm (225))
μ PD160970MA-6A5

L/S : Level shifter (Vdd \rightarrow Vcc, $\left.\mathrm{Vss} \rightarrow \mathrm{V}_{\mathrm{EE}}\right)$

2. PIN FUNCTIONS

Pin Name	Pin Symbol	1/0	Function	Pin Name	Pin Symbol	I/O	Function
V_{11}	1	Input	Logic input	Vo8	13	Output	High-withstanding-voltage
V_{12}	2			Vo7	14		output
V_{13}	3			Vee	15	-	Negative power supply for high -withstanding-voltage block
$V_{14 A}$	4			Vcc	16	-	Positive power supply for high -withstanding voltage block
$\mathrm{V}_{148}{ }^{\text {Note }}$	5			Vo6	17	Output	High-withstanding-voltage output
VDD	6	-	Power supply for logic block	Vo5	18		
Vss	7	-	Logic ground	Vo4	19		
$\mathrm{V}_{158}{ }^{\text {Note }}$	8	Input	Logic input	Vo3	20		
$V_{15 A}$	9			Vcc	21	-	Negative power supply for high -withstanding-voltage block
V_{16}	10			Vee	22	-	Positive power supply for high -withstand-voltage block
V_{17}	11			Vo2	23	Output	High-withstanding-voltage output
V_{18}	12			Vo1	24		

Note Use the $V_{14 B}$ and $V_{15 B}$ pins at the DC level.

3. Relation of logic input and High-withstanding-voltage output

$3.1 \mathrm{~V}_{11}$ to $\mathrm{V}_{13}, \mathrm{~V}_{16}$ to V_{18}

$\mathrm{V}_{\text {In }}$	$\mathrm{V}_{\text {on }}$
L	V_{CC}
H	$\mathrm{V}_{\text {EE }}$

High-withstanding-voltage output

$3.2 \mathrm{~V}_{14 \mathrm{~A}} / \mathrm{V}_{148}, \mathrm{~V}_{15 \mathrm{~A}} / \mathrm{V}_{15 B}$

$\mathrm{V}_{\text {InA }}$	$\mathrm{V}_{\text {InB }}$	$V_{\text {On }}$
L	(DC)	V_{CC}
H		V_{EE}
L	(DC)	V_{EE}
H		V_{CC}

4. Usage Cautions

(1) The power-on sequence is $V_{S S} \rightarrow V_{D D} \rightarrow$ logic signal $\rightarrow V_{E E} \rightarrow V_{C C}$, and the power-off sequence is the reverse sequence.

- Vss and Vdd, and Vee and Vcc can be powered on simultaneously.
- To prevent an abnormal output operation, it is recommended to fix the logic input during the transition phase of Vee and Vcc to either "H" or "L".

Remark The term "logic signal" as used above includes not only the rising edge/falling edge of the signal, but also "H" or "L" level input.
(2) To ensure the switching characteristics of the $V_{I 4 A} / V_{I 4 B}$ and $V_{I 5 A} / V_{I 5 B}$ signal input, be sure to make the $V_{I 4 B}$ and $V_{\text {IsB }}$ pins DC input. Also, be sure to fix unused input pins to "H" or "L".
(3) Perform thorough evaluation with the actual device for simultaneous switching of multiple output circuits, bearing in mind the allowable output current during switching.
(4) The output transistors in this device are designed for an impedance of several tens of ohms. Therefore, if driving a large load, IC malfunction and IC destruction or degradation may result owing to the influence of an output current of several hundred $m A_{p-p}$ per output. To prevent such malfunction from occurring, a number of countermeasures can be implemented, including the following.
<1> Use a large-capacitance decoupling capacitor with superior high-frequency characteristics.
$<2>$ Insert in series a damping resistor for limiting the output current between the output pin and the load.
Since the optimum values of constants differ depending on the equipment, determine the correct constants based on careful evaluation.
(5) Be sure to externally short power-supply pins for which several exist (Vcc and Vee).
(6) Do not use the device with multiple output pons shorted. This may cause IC malfunction, destruction, or degradation.

5. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, $\mathrm{Vss}=\mathbf{0 V}$)

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	VDD	-0.5 to +4.5	V
Positive power supply for high -withstanding-voltage block	Vcc	-0.5 to +17.0	V
Negative power supply for high -withstanding-voltage block	$V_{\text {EE }}$	-8.0 to +0.5	V
Bias power supply for high -withstanding-voltage block	Vcc - Vee	-0.5 to +25.0	V
Input Voltage	V_{1}	-0.5 to $\mathrm{VDD}^{\text {d }} 0.5$	V
Output Voltage	Vo	Vee - 0.5 to $\mathrm{V}_{\text {cc }}+0.5$	V
Operating Ambient Temperature	T_{A}	-10 to +60	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-40 to +125	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{d}	$500{ }^{\text {Note }}$	mW

Note When a glass epoxy board ($100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 1.0 \mathrm{~mm}$, copper-plated area of 15%) is mounted.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range ($\mathrm{T}_{\mathrm{A}}=-10$ to $+60^{\circ} \mathrm{C}$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply Voltage	VDD		3.0	3.3	3.6	V
	Vcc		9.5	11.5	13.5	V
	$V_{\text {EE }}$		-6.5	-5.5	-4.5	V
	Voc-Vee		14.0	17.0	20.0	V
Clock Frequency	fcık				200	kHz

Electrical Characteristics ($T_{A}=-10$ to $+60^{\circ} \mathrm{C}, \mathrm{VDD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Vcc}=11.5 \mathrm{~V} \pm 1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.5 \mathrm{~V} \pm$ $\left.0.5 \mathrm{~V}, \mathrm{tr}=\mathrm{tf}_{\mathrm{t}} \leq 5.0 \mathrm{~ns}\right)$

Parameter	Symbol	Conditions		MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Low-Level Input Voltage	VIL	All input pins		Vss		0.2 VDD	V
High-Level Input Voltage	V_{IH}	All input pins		0.7 VDD		VDD	V
Low-Level Output Voltage	VoL	$\mathrm{loL}=+1.0 \mathrm{~mA}$, All output pins			-5.42	-4.87	V
High-Level Output Voltage	Vон	$\mathrm{IOH}=-1.0 \mathrm{~mA}$, All output pins		10.37	11.42		V
Output ON Resistance	Ron	$\mathrm{lo}= \pm 1.0 \mathrm{~mA}$, All output pins			80	130	Ω
Static Current	Ido	$V_{1}=V_{s s}$ no load	V DD		0.1	10	$\mu \mathrm{A}$
	Icc		Vcc		0.1	10	$\mu \mathrm{A}$
Input Leak Current	ILI	$\mathrm{V}_{1}=\mathrm{V}_{\text {dD }}$ or $\mathrm{V}_{\text {ss }}$, All input pins		-1.0		1.0	$\mu \mathrm{A}$
Input Capacitance	Cl_{1}				7		pF

Note The TYP. value is a reference value when $T_{A}=25^{\circ} \mathrm{C}, \mathrm{VdD}=3.3 \mathrm{~V}, \mathrm{Vcc}=11.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{Ee}}=-5.5 \mathrm{~V}$.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-10$ to $+60^{\circ} \mathrm{C}, \mathrm{VdD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Vcc}=11.5 \mathrm{~V} \pm 1.0 \mathrm{~V}, \mathrm{Vee}=-5.5 \mathrm{~V} \pm$

Parameter	Symbol	Condition	MIN.	TYP. ${ }^{\text {Note }}$	MAX.	Unit
Output delay time1	tpHL1	All output pins, no load, Vо1-Vоз, Vо6-Vов		35	140	ns
	tpLH1			45	140	ns
Output delay time2	tphl2	All output pins, no load, Vo4, Vo5		40	140	ns
	tPLH2			50	140	ns

Note The TYP. value is a reference value when $T_{A}=25^{\circ} \mathrm{C}, \mathrm{VdD}=3.3 \mathrm{~V}, \mathrm{~V} c \mathrm{C}=11.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{EE}}=-5.5 \mathrm{~V}$.

Switching Characteristics Waveform

6. PACKAGE DRAWING

24-PIN PLASTIC TSSOP (5.72 mm (225))

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	6.65 ± 0.10
A^{\prime}	6.5 ± 0.1
B	0.575
C	0.5 (T.P.)
D	0.22 ± 0.05
E	0.1 ± 0.05
F	1.2 MAX.
G	1.0 ± 0.05
H	6.4 ± 0.1
I	4.4 ± 0.1
J	1.0 ± 0.1
K	0.17 ± 0.025
L	0.5
M	0.10
N	0.08
P	$3^{\circ}{ }_{-3}{ }^{\circ}{ }^{\circ}$
R	0.25
S	0.6 ± 0.15
	P24MA-50-6A5

7. RECOMMENDED MOUNTING CONDITIONS

The μ PD160970 should be soldered and mounted under the following recommended conditions.
For details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).
For soldering methods and conditions other than those recommended below, contact an NEC Electronics sales representative.

Recommended Soldering Conditions for Surface Mounting Type

μ PD160970MA-6A5 : 24-pin plastic TSSOP (5.72 mm (225))

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature : $235^{\circ} \mathrm{C}$, Time : 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count : Three times or less, Exposure, limit : None, Flux : Rosin flux with low chlorine (0.2 Wt \% or below) recommended	IR35-00-3
VPS	Package peak temperature : $215^{\circ} \mathrm{C}$, Time : 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Three times or less, Exposure, limit : None, Flux : Rosin flux with low chlorine (0.2 Wt\% or below) recommended	VP15-00-3
Wave Soldering	Package peak temperature : $260^{\circ} \mathrm{C}$, Time : 10 seconds max., Preheating temperature : $120^{\circ} \mathrm{C}$ max., Exposure, limit : Once, Flux : Rosin flux with low chlorine ($0.2 \mathrm{Wt} \%$ or below) recommended	WS60-00-1

Caution Do not use different soldering methods together.

[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

[^0]: The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production.
 Not all products and/or types are availabe in every country. Please check with an NEC Electronics sales representative for availability and additional information.

