TOSHIBA TLP813

TOSHIBA PHOTOINTERRUPTER INFRARED LED + PHOTOTRANSISTOR

TLP813

IMAGE SCANNER, HANDY COPY

COPYING MACHINE, FACSIMILE

PHOTOELECTRIC TYPE COUNTER

FOR DETECTING VARIOUS SUBSTANCES

The TLP813 is a PWB direct mounting type photointerrupter with an GaAs infrared LED and a Si phototransistor incorporated.

In an application to get reference pulses in combination with a rotating disk, the detection slit width as narrow as 0.2mm allows to make the slit pitch narrow and get many pulses per rotation. Because of the oblong detection slit, this phototransistor is best suited to the upward -down- ward position detection.

- Printed wiring board direct mounting type (with a locating pin).
- Gap: 2.2mm
- High resolution :Slit width 0.2×2.0mm (the oblong slit)
- Current transfer ratio : IC/IF=2.5% (min)
- The detector side is of visible light cut type.

Unit in mm

Weight: 0.9g (typ.)

JEDEC

TOSHIBA

EIAJ

PIN CONNECTION

2° 3

11-11B1

): REFERENCE VALUE

- 1. CATHODE
- 2. ANODE
- 3. EMITTER
- 4. COLLECTOR

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT		
LED	Forward Current	$ m I_{ m F}$	50	mA		
	Forward Current Derating (Ta>25°C)	$\Delta I_{\mathbf{F}}/^{\circ}\mathbf{C}$	-0.33	mA/°C		
	Reverse Voltage	$V_{\mathbf{R}}$	5	V		
	Collector-Emitter Voltage	v_{CEO}	35	V		
DETECTOR	Emitter Collector Voltage	v_{ECO}	5	V		
	Collector Power Dissipation	$P_{\mathbf{C}}$	75	mW		
	Collector Power Dissipation Derating (Ta>25°C)	∆P _C /°C	-1	mW/°C		
	Collector Current	$I_{\mathbf{C}}$	50	mA		
Operating Temperature Range		$T_{ m opr}$	-30~85	°C		
Storage Temperature Range		$\mathrm{T_{stg}}$	-40~100	°C		
So	ldering Temperature (5s)	$T_{ m sol}$	260	°C		

961001EBC2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

OPTO-ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Forward Voltage	$V_{\mathbf{F}}$	$I_{ m F} = 10 { m mA}$	1.00	1.15	1.30	V
LED	Reverse Current	$I_{\mathbf{R}}$	$V_R = 5V$	_	_	10	μ A
LED	Peak Emission Wavelength	$\lambda_{\mathbf{P}}$	$I_{ m F}\!=\!20{ m mA}$	_	940	_	nm
	Dark Current	I _D (I _{CEO})	$V_{CE} = 10V, I_{F} = 0$	_	_	0.1	μ A
DETECTOR	Peak Sensitivity Wavelength	$\lambda_{\mathbf{P}}$	_	_	870	_	nm
	Current Transfer ratio	I_C/I_F	$V_{CE}=5V, I_F=20mA$	2.5	_	50	%
COUPLED	Collector-Emitter Saturation Voltage	V _{CE} (sat)	$I_F = 20 \text{mA}, I_C = 0.25 \text{mA}$	_	0.15	0.4	V
	Rise Time	$\mathfrak{t}_{\mathbf{r}}$	$V_{CC}=5V$, $I_{C}=2mA$	_	6		μs
	Fall Time	t_f	$R_{L}=100\Omega$	_	6	_	μι

PRECAUTION

Please be careful of the followings.

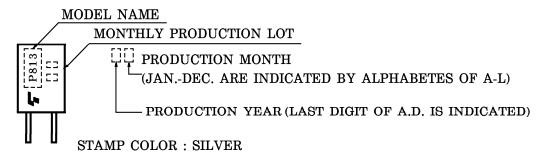
- If chemical are used for cleaning, the soldered surface only shall be cleaned with chemicals avoiding the whole cleaning of the package.
- The container is made of polycarbonate. Polycarbonate is usually stable with acid, alcohol, and aliphatic hydrocarbons however, with pertochemicals (such as benzene, toluene, and acetone), alkali, aromatic hydrocarbons, or chloric hydrocarbons, polycarbonate becomes cracked, swollen, or melted. Please take care when chosing a packaging material by referencing the table below.

<Chemicals to avoid with polycarbonate>

	PHENOMENON	CHEMICALS
Α	Little deterioration but staining	nitric acid (low concentration), hydrogen peroxide, chlorine
В	Cracked, crazed, or swollen	 acetic acid (70% or more) gasoline methyl ethyl ketone, ehtyl acetate, butyl acetate ethyl methacrylate, ethyl ether, MEK acetone, m-amino alcohol, carbon tetrachloride carbon disulfide, trichloroethylene, cresol thinners, oil of turpentine triethanolamine, TCP, TBP
С	Melted { }: Used as solvent.	 concentrated sulfuric acid benzene styrene, acrylonitrile, vinyl acetate ethylenediamine, diethylenediamine chloroform, methyl chloride, tetrachloromethane, dioxane, 1, 2-dichloroethane
D	Decomposed	ammonia water other alkali

TLP813 shall be mounted on an unwarped surface.

- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

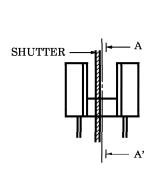

 The products described in this document are subject to foreign exchange and foreign trade control laws.

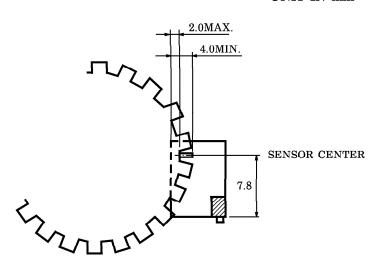
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

 The information contained herein is subject to change without notice.

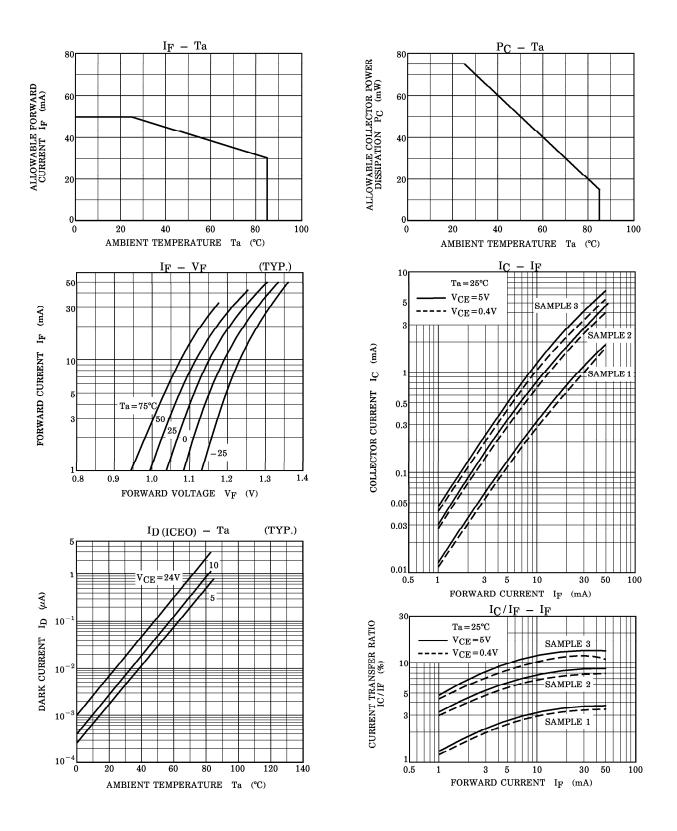
1997-12-10

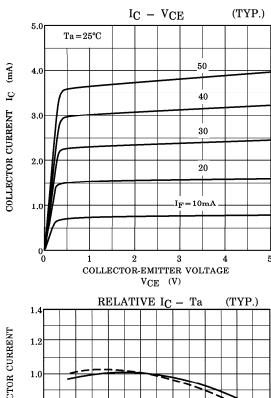
PRODUCT INDICATION

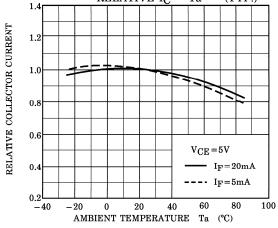

POSITIONING OF SHUTTER AND DEVICE

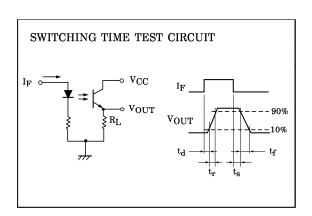

To operate correctly, make sure that the shutter and the device are positioned as shown in the figure below.

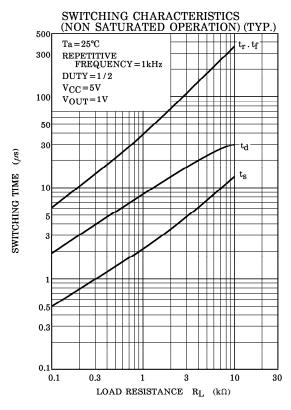
The shit pitch of the shutter must be set wider than the slit width of the device.


Determine the width taking the switching time into consideration.


UNIT IN mm






A-A' CROSS SECTION

