T6B70BF

Interface IC for Water Heater

The T6B70BF incorporates two-channel 4-bit DA converter, a pseudo sine wave generator and an external analog signal detection/non-detection circuit. It is designed to be used mainly for communication between water heater and control unit.

Features

- On-chip two-channel 4-bit DA converter (opposite polarities)
- On-chip pseudo sine wave generator (external clock/16)
- On-chip external analog signal detection/non-detection circuit
- On-chip two-channel analog switch

Weight: 0.16 g (typ.)

Block Diagram

Pin Assignment

Pin Function

No.	Symbol	Input/Output	Function
1	OSCIN	Input	Pins connected to oscillation
2	OSCOUT	Output	Pins connected to oscillation
3	FOUT	Output	Output pin for oscillation waveform shaping circuit
4	$\overline{\text { SCTL }}$	Input	Modulation control signal input pin
5	RESET	Input	Reset signal input pin
6	AMPOUT	Output	Amplifier signal output pin
7	AMPIN	Input	Amplifier signal input pin
8	$\mathrm{V}_{\text {SS }}$	-	Device GND pin (0 V)
9	$\overline{\text { DOUT }}$	Output	Output pin for amplifier input signal detector
10	SW2OUT	Output	Output pin on analog SW2 side
11	SW2IN	Input	Input pin on analog SW2 side
12	SOUT-	Output	Pseudo sine wave (opposite polarity of SOUT+ output) output pin
13	SOUT+	Output	Pseudo sine wave output pin
14	SW1IN	Input	Input pin on analog SW1 side
15	SW1OUT	Output	Output pin on analog SW1 side
16	V_{DD}	-	Device power supply pin (+5 V)

Function Description

(1) Pseudo sine wave generator and 4-bit DA converters (sending block)

Pseudo sine wave signal with Fosc/16 frequency is driven out from pseudo sine wave output pin (SOUT+ and SOUT-).
The outputs of pins SOUT+ and SOUT- have the opposite polarities.
The block of pseudo sine wave generator and 4 -bit DA converter (the side of SOUT+ pin) are shown below.

The data of pseudo sine wave generator is driven out in the following sequence.
$0 \rightarrow 1 \rightarrow 3 \rightarrow 6 \rightarrow 9 \rightarrow \mathrm{C} \rightarrow \mathrm{E} \rightarrow \mathrm{F} \rightarrow \mathrm{F} \rightarrow \mathrm{E} \rightarrow \mathrm{C} \rightarrow 9 \rightarrow 6 \rightarrow 3 \rightarrow 1 \rightarrow 0$ (in hexadecimal)

@FOSC = 4 MHz

Thus, the pseudo sine waveform of positive-going and negative-going outputs is like a staircase at no load.
An analog switch is incorporated so that the driver output buffer is connected to the transmission line only when transmission is performed.
However, an emitter follower circuit is externally connected to the driver output buffer.
The phase difference between positive-going and negative-going outputs is within $180^{\circ} \pm 5^{\circ}$. (pseudo sine wave output phase fluctuation)
(2) Amplifier input circuit and signal detection/non-detection circuit (receiving block)

The modulation signal input block incorporates two level comparators having a high and a low threshold values to detect the external sine wave signal with amplitude higher than the specified threshold. Thus, it avoids signals with amplitude lower than the specified threshold (e.g., noise signals) being detected erroneously.
The detection frequency range (frequency window) is determined by the divider ratio $1 / 18$ to $1 / 14$ of Fosc.

In detection/non-detection determined condition, when the signals within the specified frequency range are detected (or not detected) sequentially, signals are controlled using the majority rule. The time which detection/non-detection is determined takes 9 to 15 waves to pass when one wave is referenced to Fosc/16 frequency.

AMPOUT Truth Table

	VA	VB	AMPOUT
VBIAS $>\mathrm{VH}$	L	H	L
VH $>$ VBIAS $>\mathrm{VL}$	H	H	Hold
VBIAS $<\mathrm{VL}$	H	L	H

(3) Function description and timing chart of the sending block

When modulation control input ($\overline{\mathrm{SCTL}}$) is in High-level, pseudo sine wave output is held at 0° of the phase angle of pseudo sine wave. When modulation control input changes from High-level to Low-level, the pseudo sine wave output (SOUT +) starts from -90° (SOUT- starts from $+90^{\circ}$).
In this case, the time which takes to turn ON is as follows.
td (ON) < 500 ns
When modulation control input changes from Low-level to High-level, the phase angle is forcibly held at 0°, regardless of the phase of the pseudo sine wave output. (the pseudo sine wave output is stopped). In this case, the time which takes to turn OFF is as follows.

$$
\operatorname{td}(\mathrm{OFF})<1 \mu \mathrm{~s}
$$

(4) Function description and timing chart of the receiving block

When it is ready to receive amplifier input signal, the time T (DET) which takes to change from High to Low at $\overline{\text { DOUT }}$ pin is within the time which 9 to 15 waves to pass. In this case, one wave is referenced to 16 Fosc clocks. The time width is determined by the internal clock and amplifier input signal. The timings of the internal clock and internal detection signal in the majority logic circuit are synchronous with each other. When input signals with the cycle, which is within the range specified by the frequency window, are detected (or not detected) sequentially, this rule is valid (the majority rule).

Note 1: Any communication protocol is used, however, it takes 15 carrier waves to pass when the signal changes its state.

Timing Chart (SOUT+ = SW1IN, SW1OUT, SOUT- = SW2IN, SW2OUT)

Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C} \pm 1.5^{\circ} \mathrm{C}$)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{DD}	-0.3 to 6.0	V
Input voltage	VI	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input peak current	IIK	-20 to 20	mA
Operating temperature	$\mathrm{T}_{\text {opr }}$	-20 to 80	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$
Power dissipation	PD_{D}	0.54	W

Note 1: Decreases approximately 4.35 mW per $1^{\circ} \mathrm{C}$.

Electrical Characteristics

(unless otherwise specified, $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, V SS $=0 \mathrm{~V}$, FOSC $=4 \mathrm{MHz}$ and $\mathrm{Ta}=\mathbf{- 2 0}$ to $80^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
$\mathrm{V}_{\text {DD }}$ pin (pin 16)								
Operating voltage		$V_{\text {DD }}$	-	-	4.5	5.0	5.5	V
Current consumption		IDD	1	No load, Fosc $=4 \mathrm{MHz}$	-	-	10	mA
OSCIN pin (pin 1) and OSCOUT pin (pin 2)								
Oscillation frequency		FOSC	2	-	1	4	10	MHz
Input voltage	High level	VIHOSC	3	-	$\begin{gathered} 0.7 \\ V_{\text {DD }} \end{gathered}$	-	$V_{D D}$	V
	Low level	VILOSC	3	-	$\mathrm{V}_{\text {SS }}$	-	$\begin{gathered} 0.3 \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	
Input current	High level	IIHROSC	4	$\mathrm{VIN}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	3.2	6.58	13.2	$\mu \mathrm{A}$
	Low level	IILROSC	4	$\mathrm{VIN}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	-3.2	-6.58	-13.2	
Output voltage	High level	VOHOSC	3	$\mathrm{IOH}=-0.1 \mathrm{~mA}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}{ }^{-} . \end{gathered}$	-	$V_{\text {DD }}$	V
	Low level	VOLOSC	4	$\mathrm{IOL}=+0.1 \mathrm{~mA}$	$\mathrm{V}_{\text {SS }}$	-	$\begin{gathered} \mathrm{V}_{\text {Ss }}+ \\ 0.6 \end{gathered}$	
$\overline{\text { RESET }}$ pin (pin 5)								
Low to High input switching level		VIHRST	5	-	$\begin{aligned} & 0.65 \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	-	$V_{D D}$	V
High to Low input switching level		VILRST	5	-	$V_{\text {SS }}$	-	$\begin{aligned} & 0.35 \\ & V_{D D} \end{aligned}$	V
High-level input current		IIHRST	6	$\mathrm{VIN}=\mathrm{V}_{\text {DD }}$	-10	-	10	$\mu \mathrm{A}$
Pull-up resistance 1		IILRRST1	7	$\mathrm{VIN}=\mathrm{V}_{\text {SS }}, \mathrm{Ta}=25$	9	15	21	k Ω
Pull-up resistance 2		IILRRST2	7	$\mathrm{VIN}=\mathrm{V}_{\text {SS }}, \mathrm{Ta}=-20$ to 80	6.3	-	27.3	$k \Omega$
$\overline{\text { SCTL }}$ pin (pin 4)								
Low to High input switching level		VIHSCTL	8	-	$\begin{aligned} & 0.65 \\ & V_{D D} \end{aligned}$	-	$V_{\text {DD }}$	V
High to Low input switching level		VILSCTL	8	-	$\mathrm{V}_{\text {SS }}$	-	$\begin{aligned} & 0.35 \\ & V_{\text {DD }} \end{aligned}$	V
Input current	High level	IIHSCTL	9	$\mathrm{VIN}=\mathrm{V}_{\mathrm{DD}}$	-1	-	1	$\mu \mathrm{A}$
	Low level	IILSCTL	9	$\mathrm{VIN}=\mathrm{V}_{\mathrm{DD}}$	-1	-	1	
FOUT pin (pin 3)								
Output voltage	High level	VOHFOUT	10	$\mathrm{IOH}=-1.0 \mathrm{~mA}$	$\begin{gathered} V_{D D}- \\ 1.0 \end{gathered}$	-	$V_{\text {DD }}$	V
	Low level	VOLFOUT	11	$\mathrm{IOL}=+1.0 \mathrm{~mA}$	$\mathrm{V}_{\text {SS }}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{SS}}+ \\ 0.6 \end{gathered}$	

Note 2: One direction in which current flow into the IC should be + (sink) and the other direction in which current flow out from the IC should be - (drain).

Characteristics		Symbol	Test Circuit	Test Condition	Min	Typ.	Max	Unit
$\overline{\text { DOUT }}$ pin (pin 9)								
Output voltage	High level	VOHDOUT	12	$\mathrm{IOH}=-1.0 \mathrm{~mA}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}{ }_{1.0} \\ \hline \end{gathered}$	-	$V_{\text {DD }}$	V
	Low level	VOLDOUT	13	$\mathrm{IOL}=+1.0 \mathrm{~mA}$	VSS	-	$\begin{gathered} \mathrm{V}_{\mathrm{SS}}+ \\ 0.6 \end{gathered}$	
Non-reception to reception detection time		TDET1	19	Fosc $=4 \mathrm{MHz}$, AMPIN $=250 \mathrm{kHz}$ Time which takes $\overline{\mathrm{DOUT}}$ to change from High to Low	40	-	60	$\mu \mathrm{s}$
Reception to non-reception detection time		TDET2	19	$\begin{aligned} & \text { Fosc }=4 \mathrm{MHz}, \\ & \text { AMPIN }=250 \mathrm{kHz} \end{aligned}$ Time which takes DOUT to change from Low to High	36	-	56	$\mu \mathrm{s}$
AMPIN pin (pin 7)								
Input dynamic range		VAMPIN	14	-	$\mathrm{V}_{\text {SS }}$	-	V_{DD}	V
Pull-up resistance 1		IILRAPU1	15	$\mathrm{VIN}=\mathrm{V}_{\text {SS }}, \mathrm{Ta}=25$	11.6	19.4	27.2	k Ω
Pull-up resistance 2		IILRAPU2	15	$\mathrm{VIN}=\mathrm{V}_{\text {SS }}, \mathrm{Ta}=-20$ to 80	7	-	38	k Ω
Pull-down resistance 1		IIHRAPD1	16	$\mathrm{VIN}=\mathrm{V}_{\mathrm{DD}}, \mathrm{Ta}=25$	5.9	9.8	13.7	k Ω
Pull-down resistance 2		IIHRAPD2	16	$\mathrm{VIN}=\mathrm{V}_{\text {DD }}, \mathrm{Ta}=-20$ to 80	3	-	19.2	k Ω
Amplifier input bias voltage		VBIAS	17	No load (design goal)	1.54	1.63	1.71	V
Amplifier input sensitivity		VPP	18	No load, receivable amplitude range is 250 kHz , when sine wave signal is applied. (design goal)	0.3	-	0.45	V
Detection frequency range		DETON	19	Fosc $=4 \mathrm{MHz}$	236	-	266	kHz
Non-detection frequency (low frequency)		DETOFF1	19	Fosc $=4 \mathrm{MHz}$	-	-	222	kHz
Non-detection frequency (high frequency)		DETOFF2	19	Fosc $=4 \mathrm{MHz}$	286	-	-	kHz
SW1IN pin (pin 14) and SW1OUT pin (pin 15)								
Analog switch input voltage		VINASW1	-	-	$\mathrm{V}_{\text {SS }}$	-	$V_{\text {DD }}$	V
Analog switch output voltage		VOUTASW1	-	-	$\mathrm{V}_{\text {SS }}$	-	V_{DD}	V
OFF-leak current of analog switch 1		IOFFASW1	20	$\begin{aligned} & \overline{\text { SCTL }}=\mathrm{H}, \mathrm{SW} 1 \mathrm{IN}=\mathrm{V}_{\mathrm{DD}}, \\ & \text { SW1OUT }=\mathrm{V}_{S S} \end{aligned}$	-1	-	1	$\mu \mathrm{A}$
ON-resistance of analog switch 1		RONASW1	21	$\begin{aligned} & \overline{\mathrm{SCTL}}=\mathrm{L}, \mathrm{SW} 1 \mathrm{IN}=5 \mathrm{~V}, \\ & \text { SW1OUT }=0 \mathrm{~V} \\ & \text { Current measure } \end{aligned}$	35	-	105	Ω
SW2IN pin (pin 11) and SW2OUT pin (pin 10)								
Analog switch input voltage		VINASW2	-	-	$V_{\text {SS }}$	-	VDD	V
Analog switch output voltage		VOUTASW2	-	-	$\mathrm{V}_{\text {SS }}$	-	V_{DD}	V
OFF-leak current of analog switch 2		IOFFASW2	20	$\begin{aligned} & \overline{\text { SCTL }}=\mathrm{H}, \mathrm{SW} 2 \mathrm{IN}=\mathrm{V}_{\mathrm{DD}}, \\ & \text { SW2OUT }=\mathrm{V}_{\mathrm{SS}} \end{aligned}$	-1	-	1	$\mu \mathrm{A}$
ON-resistance of analog switch 2		RONASW2	21	$\begin{aligned} & \overline{\mathrm{SCTL}}=\mathrm{L}, \mathrm{SW} 2 \mathrm{IN}=5 \mathrm{~V}, \\ & \text { SW2OUT }=0 \mathrm{~V} \\ & \text { Current measure } \end{aligned}$	35	-	105	Ω
SOUT+ pin (pin 13) and SOUT- pin (pin 12)								
Output voltage		$\mathrm{V}_{\text {OPP }}$	22	Maximum voltage value at no load	$\begin{aligned} & 0.85 \\ & V_{D D} \end{aligned}$	-	$V_{\text {DD }}$	V
Pseudo sine wave output frequency		FSIN	23	FOSC $=4 \mathrm{MHz}$	-	250	-	kHz
Pseudo sine wave output start time		tdON	23	$\overline{\text { SCTL }}=\mathrm{H} \rightarrow \mathrm{L}$	-	-	500	ns
Pseudo sine wave output stop time		tdOFF	23	$\overline{\text { SCTL }}=\mathrm{L} \rightarrow \mathrm{H}$	-	-	1	$\mu \mathrm{s}$
Equivalent output impedance		ROUTSIN	24	No load	2.8	4	5.2	k Ω

Note: One direction in which current flow into the IC should be + (sink) and the other direction in which current flow out from the IC should be - (drain).

Test Circuit

(1) Current consumption

(3) High-level input voltage

Low-level input voltage
High-level output voltage

(5) Low to High input switching level

High to Low input switching level

(2) Oscillation frequency

(4) High-level input current Low-level input current Low-level output voltage

(6) High-level input current

(7) Pull-up resistance 1

Pull-up resistance 2

(1)	OSCIN	$V_{D D}$	(16)
(2)	OSCOUT	SW10UT	(15)
IILRRST1 ${ }^{3}$	FOUT	SW1IN	(14)
$\xrightarrow{\text { IILRRST2 }}$	$\overline{\text { SCTL }}$	SOUT+	(13)
-(A)-5	RESET	SOUT-	(12)
(6)	AMPOUT	SW2IN	11
(7)	AMPIN	SW2OUT	10
$\rightarrow 8$	$\mathrm{V}_{\text {SS }}$	$\overline{\text { DOUT }}$	9

(9) High-level input current

Low-level input current

(11) Low-level output voltage

(8) Low to High input switching level High to Low input switching level

(10) High-level output voltage

(12) High-level output voltage

(13) Low-level output voltage

(15) Pull-up resistance 1

Pull-up resistance 2

(17) Amplifier input bias voltage

(14) Input dynamic range

(16) Pull-down resistance 1

Pull-down resistance 2

(18) Amplifier input sensitivity

(19) Detection frequency range

Non-detection frequency (low frequency)
Non-detection frequency (high frequency)
Non-reception to reception detection time
Reception to non-reception detection time

(21) ON-resistance of analog switch 1

ON -resistance of analog switch 2

(23) Pseudo sine wave output frequency Pseudo sine wave output start time Pseudo sine wave output stop time

(20) OFF-leak current of analog switch 1 OFF-leak current of analog switch 2

(22) Output voltage

(24) Equivalent output impedance

Markings

Package Dimensions

Weight: 0.16 g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

