

## SPICE Device Model SUM50N03-13LC

### **Vishay Siliconix**

### N-Channel 30-V (D-S) 175°C MOSFET with Sense Terminal

#### **CHARACTERISTICS**

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

#### **DESCRIPTION**

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{\text{gd}}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

#### SUBCIRCUIT MODEL SCHEMATIC



This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71918 www.vishay.com 09-Jun-04

### **SPICE Device Model SUM50N03-13LC**

### Vishay Siliconix



| SPECIFICATIONS (T <sub>J</sub> = 25°C UNLESS OTHERWISE NOTED) |                     |                                                                                                                                     |                   |                  |      |
|---------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|------|
| Parameter                                                     | Symbol              | Test Conditions                                                                                                                     | Simulated<br>Data | Measured<br>Data | Unit |
| Static                                                        |                     |                                                                                                                                     | <del>,</del>      |                  |      |
| Gate Threshold Voltage                                        | $V_{GS(th)}$        | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                                                                                  | 1.8               |                  | V    |
| On-State Drain Current <sup>a</sup>                           | I <sub>D(on)</sub>  | V <sub>DS</sub> = 5 V, V <sub>GS</sub> = 10 V                                                                                       | 434               |                  | Α    |
| Drain-Source On-State Resistance <sup>a</sup>                 | r <sub>DS(on)</sub> | $V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$                                                                                         | 0.010             | 0.010            | Ω    |
|                                                               |                     | $V_{GS}$ = 10 V, $I_{D}$ = 25 A, $T_{J}$ = 125°C                                                                                    | 0.016             | 0.016            |      |
|                                                               |                     | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 25 A, T <sub>J</sub> = 175°C                                                               | 0.018             | 0.018            |      |
|                                                               |                     | V <sub>GS</sub> = 4.5 V, I <sub>D</sub> = 24 A                                                                                      | 0.014             | 0.014            |      |
| Forward Voltage <sup>a</sup>                                  | $V_{SD}$            | I <sub>S</sub> = 50 A, V <sub>GS</sub> = 0 V                                                                                        | 0.90              | 1.3              | V    |
| Dynamic <sup>b</sup>                                          |                     |                                                                                                                                     |                   |                  |      |
| Input Capacitance                                             | C <sub>iss</sub>    | $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$                                                                    | 2009              | 1960             | pF   |
| Output Capacitance                                            | C <sub>oss</sub>    |                                                                                                                                     | 367               | 380              |      |
| Reverse Transfer Capacitance                                  | C <sub>rss</sub>    |                                                                                                                                     | 111               | 180              |      |
| Total Gate Charge <sup>c</sup>                                | Q <sub>g</sub>      | V <sub>DS</sub> = 15 V, V <sub>GS</sub> = 10 V, I <sub>D</sub> = 50 A                                                               | 34                | 35               | nC   |
| Gate-Source Charge <sup>c</sup>                               | $Q_{gs}$            |                                                                                                                                     | 7.6               | 7.6              |      |
| Gate-Drain Charge <sup>c</sup>                                | $Q_{gd}$            |                                                                                                                                     | 5.6               | 5.6              |      |
| Turn-On Delay Time <sup>c</sup>                               | t <sub>d(on)</sub>  | $V_{DD}$ = 15 V, $R_L$ = 0.30 $\Omega$ $I_D \cong 50$ A, $V_{GEN}$ = 10 V, $R_G$ = 2.5 $\Omega$ $I_F$ = 50,A di/dt = 100 A/ $\mu$ s | 23                | 10               | ns   |
| Rise Time <sup>c</sup>                                        | t <sub>r</sub>      |                                                                                                                                     | 19                | 93               |      |
| Turn-Off Delay Time <sup>c</sup>                              | $t_{d(off)}$        |                                                                                                                                     | 8                 | 30               |      |
| Fall Time <sup>c</sup>                                        | t <sub>f</sub>      |                                                                                                                                     | 10                | 10               |      |
| Reverse Recovery Time                                         | t <sub>rr</sub>     |                                                                                                                                     | 29                | 35               |      |

#### Notes

- a.
- Pulse test; pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2%. Guaranteed by design, not subject to production testing. Independent of operating temperature.

www.vishay.com Document Number: 71918



# SPICE Device Model SUM50N03-13LC Vishay Siliconix

### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)













Note: Dots and squares represent measured data.