SPICE Device Model SUM50N03-13LC ### **Vishay Siliconix** ### N-Channel 30-V (D-S) 175°C MOSFET with Sense Terminal #### **CHARACTERISTICS** - N-Channel Vertical DMOS - Macro Model (Subcircuit Model) - Level 3 MOS - · Apply for both Linear and Switching Application - Accurate over the -55 to 125°C Temperature Range - Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics #### **DESCRIPTION** The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device. #### SUBCIRCUIT MODEL SCHEMATIC This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits. Document Number: 71918 www.vishay.com 09-Jun-04 ### **SPICE Device Model SUM50N03-13LC** ### Vishay Siliconix | SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED) | | | | | | |---|---------------------|---|-------------------|------------------|------| | Parameter | Symbol | Test Conditions | Simulated
Data | Measured
Data | Unit | | Static | | | , | | | | Gate Threshold Voltage | $V_{GS(th)}$ | $V_{DS} = V_{GS}, I_D = 250 \mu A$ | 1.8 | | V | | On-State Drain Current ^a | I _{D(on)} | V _{DS} = 5 V, V _{GS} = 10 V | 434 | | Α | | Drain-Source On-State Resistance ^a | r _{DS(on)} | $V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$ | 0.010 | 0.010 | Ω | | | | V_{GS} = 10 V, I_{D} = 25 A, T_{J} = 125°C | 0.016 | 0.016 | | | | | V _{GS} = 10 V, I _D = 25 A, T _J = 175°C | 0.018 | 0.018 | | | | | V _{GS} = 4.5 V, I _D = 24 A | 0.014 | 0.014 | | | Forward Voltage ^a | V_{SD} | I _S = 50 A, V _{GS} = 0 V | 0.90 | 1.3 | V | | Dynamic ^b | | | | | | | Input Capacitance | C _{iss} | $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$ | 2009 | 1960 | pF | | Output Capacitance | C _{oss} | | 367 | 380 | | | Reverse Transfer Capacitance | C _{rss} | | 111 | 180 | | | Total Gate Charge ^c | Q _g | V _{DS} = 15 V, V _{GS} = 10 V, I _D = 50 A | 34 | 35 | nC | | Gate-Source Charge ^c | Q_{gs} | | 7.6 | 7.6 | | | Gate-Drain Charge ^c | Q_{gd} | | 5.6 | 5.6 | | | Turn-On Delay Time ^c | t _{d(on)} | V_{DD} = 15 V, R_L = 0.30 Ω $I_D \cong 50$ A, V_{GEN} = 10 V, R_G = 2.5 Ω I_F = 50,A di/dt = 100 A/ μ s | 23 | 10 | ns | | Rise Time ^c | t _r | | 19 | 93 | | | Turn-Off Delay Time ^c | $t_{d(off)}$ | | 8 | 30 | | | Fall Time ^c | t _f | | 10 | 10 | | | Reverse Recovery Time | t _{rr} | | 29 | 35 | | #### Notes - a. - Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. Guaranteed by design, not subject to production testing. Independent of operating temperature. www.vishay.com Document Number: 71918 # SPICE Device Model SUM50N03-13LC Vishay Siliconix ### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED) Note: Dots and squares represent measured data.