

STD55NH2LL STD55NH2LL-1

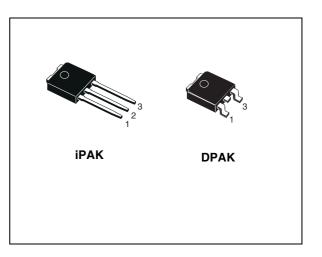
N-channel 24V - 0.010Ω - 40A - DPAK/IPAK Ultra low gate charge STripFET[™] Power MOSFET

General features

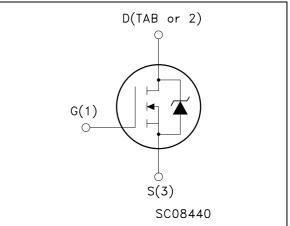
Туре	V _{DSS}	R _{DS(on)}	۱ _D
STD55NH2LL-1	24V	<0.011Ω	40A ⁽¹⁾
STD55NH2LL	24V	<0.011Ω	40A ⁽¹⁾

- 1. Value limited by wire bonding
- R_{DS(ON)} * Qg industry's benchmark
- Conduction losses reduced
- Switching losses reduced
- Low threshold device

Description


The STD55NH2LL is based on the latest generation of ST's proprietary STripFET™ technology. An innovative layout enables the device to also exhibit extremely low gate charge for the most demanding requirements as highside switch in high-frequency DC-DC converters. It's therefore ideal for high-density converters in Telecom and Computer applications.

Applications


Switching application

Part number	Marking	Package	Packaging
STD55NH2LL-1	D55NH2LL	IPAK	Tube
STD55NH2LLT4	D55NH2LL	DPAK	Tape & reel

Internal schematic diagram

Contents

1	Electrical ratings	3
2	Electrical characteristics	
3	Test circuit	8
4	Appendix A	9
5	Package mechanical data 1	1
6	Packing mechanical data1	4
7	Revision history1	5

1

Electrical ratings

Table 1.	Absolute	maximum	ratings
	Aboolato	maximani	rainge

Symbol	Parameter	Value	Unit
V _{spike} ⁽¹⁾	Drain-source voltage rating	30	V
V _{DS}	Drain-source voltage (V _{GS} = 0)	24	V
V _{DGR}	Drain-gate voltage (R _{GS} = 20 kΩ)	24	V
V _{GS}	Gate- source voltage	± 16	V
I _D ⁽²⁾	Drain current (continuous) at $T_C = 25^{\circ}C$	40	A
I _D ⁽²⁾	Drain current (continuous) at $T_C = 100^{\circ}C$	28	A
I _{DM} ⁽³⁾	Drain current (pulsed)	160	A
P _{tot}	Total dissipation at $T_{C} = 25^{\circ}C$	60 W	
	Derating Factor	0.4 W/	
E _{AS} ⁽⁴⁾	Single pulse avalanche energy	600 mJ	
T _{stg}	Storage temperature		
Tj	Max. operating junction temperature	55 to 175	°C

1. Garanted when external R_g=4.7 Ω and t_f < t_{fmax}.

2. Value limited by wire bonding

3. Pulse width limited by safe operating area.

4. Starting $T_j = 25 \text{ °C}$, $I_D = 20A$, $V_{DD} = 15V$

Table 2. Thermal da

Rthj-case	Thermal resistance junction-case max	2.5	°C/W
Rthj-amb	Thermal resistance junction-ambient max	100	°C/W
T _J Maximum lead temperature for soldering purpose		275	°C

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

	• • • • • • • • • • • • • • • • • • • •					
Symbol	Parameter Test conditions Min.		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 25mA, V _{GS} =0	24			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = max rating V_{DS} = max rating T_{C} = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 16V$			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, \ I_D = 250 \mu A$	1			V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10V, I_D = 20A$ $V_{GS} = 4.5V, I_D = 20A$		0.010 0.012	0.011 0.0135	Ω Ω

Table 3. On/off states

Table 4. Dynamic

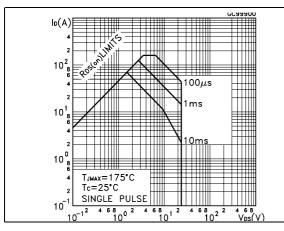
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 10V _, I _D = 10A		18		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25V, f = 1MHz, V _{GS} = 0		990 385 40		pF pF pF
R _G	Gate Input Resistance	f = 1 MHz Gate DC Bias = 0 Test Signal Level = 20 mV Open Drain		1.3		Ω
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	$V_{DD} = 10V, I_D = 20A$ $R_G = 4.7\Omega V_{GS} = 4.5V$ (see <i>Figure 13</i>)		15 56 13 10		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$0.44V \leq V_{DD} \leq 10V,$ $I_D = 40A,$ $V_{GS} = 4.5V, R_G = 4.7\Omega$ (see <i>Figure 14</i>)		8.7 4.2 2.4	11	nC nC nC
Q _{oss} ⁽²⁾	Output charge	V _{DS} = 16 V, V _{GS} = 0 V		7.6		nC

1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

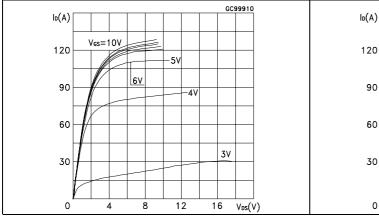
2. $Qoss = Coss^* \Delta Vin$, Coss = Cgd + Cds. See *Chapter 4: Appendix A*

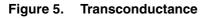
Symbol	Parameter	Test conditions Min. Typ.		Max.	Unit	
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)				40 160	A A
$V_{SD}^{(2)}$	Forward on voltage	$I_{SD} = 20A, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 40A, di/dt = 100A/µs, V_{DD} = 15V, T _j = 150°C (see <i>Figure 15</i>)		32.5 28 1.7		ns nC A

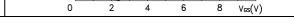
Table 5.Source drain diode

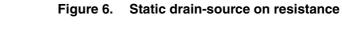

1. Pulse width limited by safe operating area.

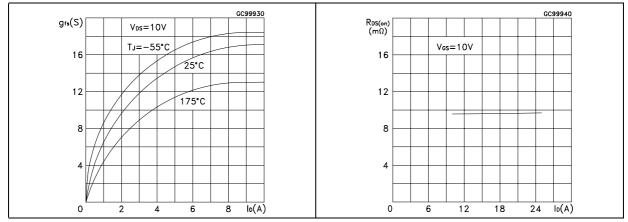
2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %




Electrical characteristics (curves) 2.1


Figure 1. Safe operating area





280DPC

к d = 0.5

Figure 2.

Figure 4.

10 0.05 $Z_{th} = k R_{thJ-c}$ 0.02 $\delta=\,{\sf t}_{\sf p}\,/\tau$ 0.01 SINGLE PULSE 10 10⁻⁵ 10-4 10-3 10^{-1 †}p(s) 10-2

Transfer characteristics

GC99920

V_{DS}=25V

57

Thermal impedance

Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

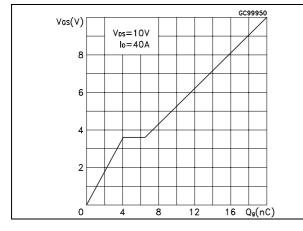


Figure 9. Normalized gate threshold voltage vs temperature

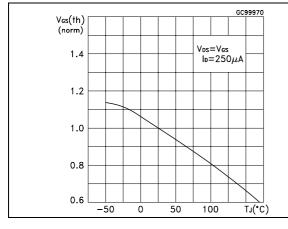


Figure 11. Source-drain diode forward characteristics

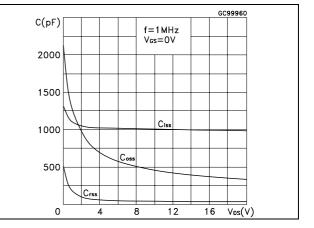


Figure 10. Normalized on resistance vs temperature

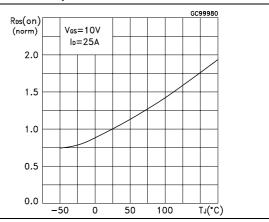
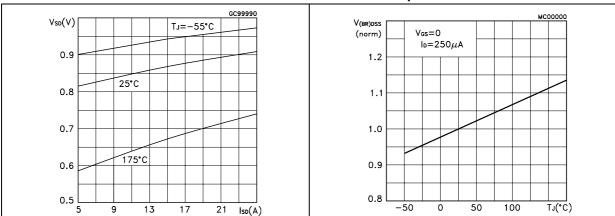



Figure 12. Normalized breakdown voltage vs temperature

57

3 Test circuit

Figure 13. Switching times test circuit for resistive load

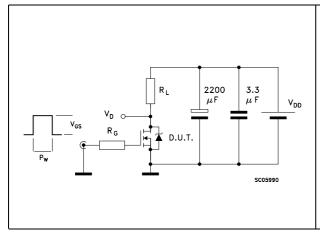
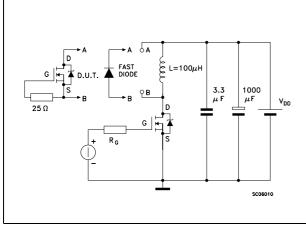



Figure 15. Test circuit for inductive load switching and diode recovery times

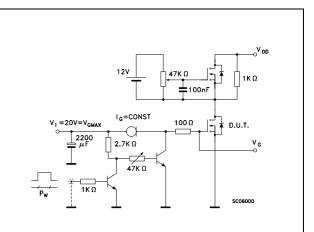
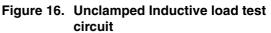



Figure 14. Gate charge test circuit

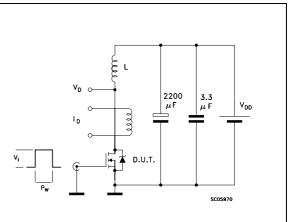
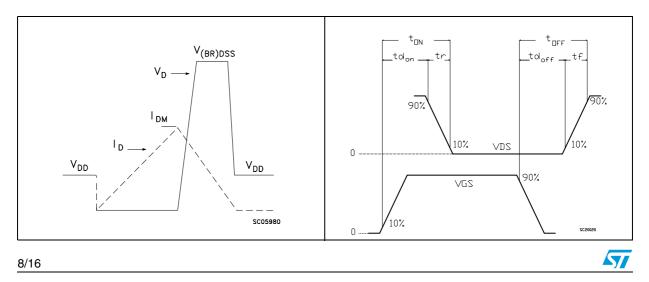
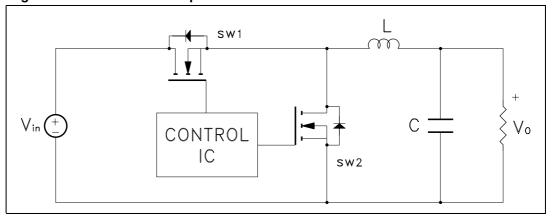




Figure 18. Switching time waveform

4 Appendix A

The power losses associated with the FETs in a synchronous buck converter can be estimated using the equations shown in the table below. The formulas give a good approximation, for the sake of performance comparison, of how different pairs of devices affect the converter efficiency. However a very important parameter, the working temperature, is not considered. The real device behavior is really dependent on how the heat generated inside the devices is removed to allow for a safer working junction temperature.

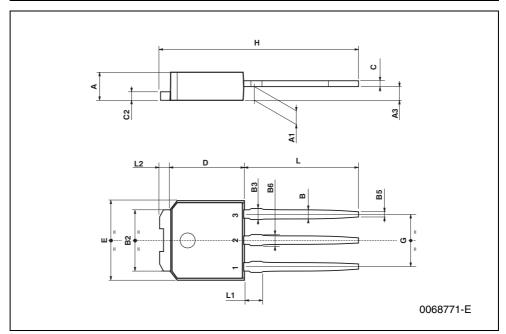
- The low side (SW2) device requires:
- Very low R_{DS(on)} to reduce conduction losses
- Small Qgls to reduce the gate charge losses
- Small Coss to reduce losses due to output capacitance
- Small Qrr to reduce losses on SW1 during its turn-on
- The Cgd/Cgs ratio lower than Vth/Vgg ratio especially with low drain to source
- voltage to avoid the cross conduction phenomenon;
- The high side (SW1) device requires:
- Small Rg and Ls to allow higher gate current peak and to limit the voltage feedback on the gate
- Small Qg to have a faster commutation and to reduce gate charge losses
- Low R_{DS(on)} to reduce the conduction losses.

		High side switching (SW1)	Low side switch (SW2)
Pconduction		$R_{DS(on)SW1} * I_L^2 * \delta$	$R_{DS(on)SW2} * I_L^2 * (1 - \delta)$
Pswitching $V_{in} * (Q_{gst})$		$V_{in} * (Q_{gsth(SW1)} + Q_{gd(SW1)}) * f * \frac{I_L}{I_g}$	Zero Voltage Switching
Pdiode	Recovery (1)	Not applicable	$V_{in} * Q_{rr(SW2)} * f$
Fulde	Conductio n	Not applicable	$V_{f(SW2)} * I_L * t_{deadtime} * f$
Pgate(Q _G)		$Q_{g(SW1)} * V_{gg} * f$	$Q_{gls(SW2)} * V_{gg} * f$
P _{Qoss}		$\frac{V_{in} * Q_{oss(SW1)} * f}{2}$	$\frac{V_{in} * Q_{oss(SW2)} * f}{2}$

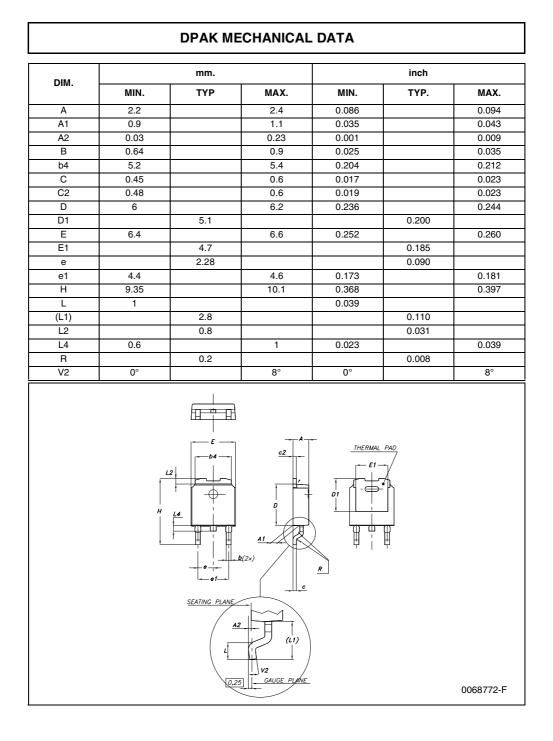
 Table 6.
 Power losses calculation

1. Dissipated by SW1 during turn-on

Parameter	Meaning			
d	Duty-cycle			
Q _{gsth}	Post threshold gate charge			
Q _{gls}	Third quadrant gate charge			
Pconduction	On state losses			
Pswitching	On-off transition losses			
Pdiode	Conduction and reverse recovery diode losses			
Pgate	Gate drive losses			
P _{Qoss}	Output capacitance losses			

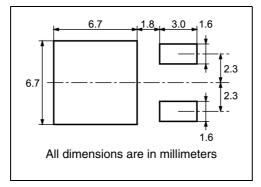

5 Package mechanical data

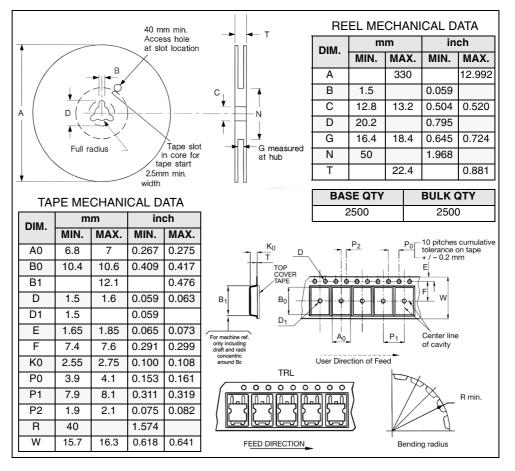
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com



DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
B3			0.85			0.033
B5		0.3			0.012	
B6			0.95			0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
Е	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047
L2		0.8	1		0.031	0.039

TO-251 (IPAK) MECHANICAL DATA





57

6 Packing mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

7 Revision history

Date	Revision	Changes		
22-Jun-2004	2	Preliminary datasheet		
21-Jul-2005	3	Complete version		
13-Jun-2006	4	Packing mechanical data inserted		
16-Jul-2006	5	New template, no content change		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

