

FEATURES:

- 8-bit MCU Core
 - Enhanced 6502 Microprocessor Megacell emulating the reduced 6805 instruction set
- 4 MHz Typical Oscillator Clock Frequency
- 8 MHz Maximum Oscillator Clock Frequency
- Low Voltage Operation: 2.2-3.2V
- 20 Re-configurable General Purpose I/O pins
- SuperFlash Memory
 - 16 KByte of Flash Memory
 - 128 Byte sectors for SoftPartition
 - 100,000 endurance cycles (typical)
 - 100 years data retention
 - Fast Write:
 - Chip-Erase: 70 ms (typical)
 - Sector-Erase: 18 ms (typical)
 - Byte-Program: 60 µs (typical)
 - In-Application Programming (IAP)
- External Host Programming Mode for Programmer Support
 - JEDEC Standard Command Sets

- 352 Byte On-Chip SRAM
- In-System Programming (ISP) Support through Firmware
- IR Input Pin for Learning Mode
- Carrier Modulator Transmitter
 - Supports Baseband, Pulse Length Modulator (PLM), and Frequency Shift Keying (FSK)
- Core Timer / Counter
 - 14-stage multifunctional ripple counter
 - Includes timer overflow, POR, RTI, and CWT
- External Reset and Low Power Reset Pins
 - One of these pins should be used to connect the external Power-on/Brown-out reset circuitry
- Power Management
 - Hardware enable bits programmable by software for entering STOP and IDLE modes
 - Package Available – 28-lead SOIC
 - 28-lead SOIC
- All non-Pb (lead-free) devices are RoHS compliant

PRODUCT DESCRIPTION

The SST65P542R is a member of SST's 8-bit applicationspecific microcontroller family targeted for infrared remote controller applications.

The SST65P542R microcontroller provides high functionality to infrared remote controller products. The device offers flexibility to store different remote control configurations for controlling multiple appliances. The configurations are either programmed at the factory during the manufacturing process or downloaded through firmware.

Using SST's SuperFlash nonvolatile memory technology, the SST65P542R enhances the functionality and reduces the cost of conventional universal remote controller devices by integrating the multiple functions of a remote controller system in a single chip solution. The built-in LED I/O ports can directly drive LED indicators. The IR transmitter port drives signals to the infrared transmitter, which, in turn, remotely controls the appliances. The SoftPartition architecture allows seamless flash memory partitioning of the program code, protocol tables, and user data in the small granularity of 128 Byte sectors. The small sector size and fast Write capability of the device greatly decreases the time and power when altering the contents of the flash memory.

The highly reliable, patented SuperFlash technology provides significant advantages over conventional flash memory technology. These advantages translate into significant cost savings and reliability benefits for customers.

TABLE OF CONTENTS

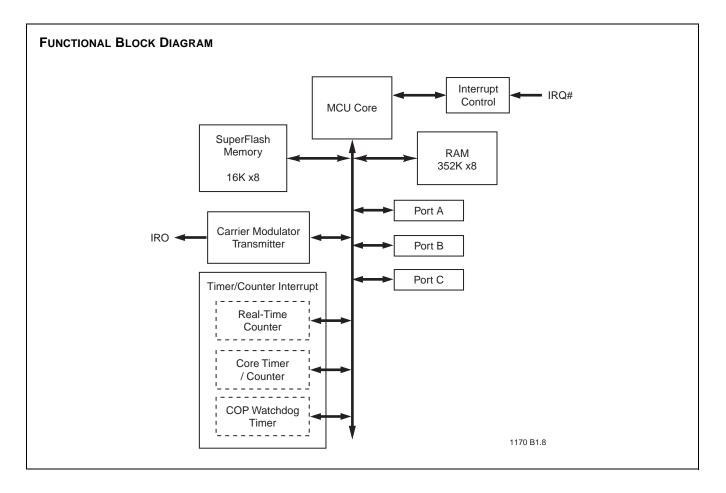
PRO	DUCT DESCRIPTION	. 1
LIST	OF FIGURES	. 4
LIST	OF TABLES.	. 4
1.0	FUNCTIONAL BLOCKS	. 5
2.0	PIN ASSIGNMENTS.	
3.0	I/O REGISTERS AND MEMORY ORGANIZATION 3.1 I/O Registers 3.2 SRAM 3.3 SuperFlash Memory	. 8 19
4.0	PARALLEL INPUT/OUTPUT PORTS	20
	4.1 Port A 4.2 Port B 4.3 Port C	20
5.0	FLASH MEMORY PROGRAMMING	21
	5.1 In-Application Programming.5.2 External Host Programming Mode.	
6.0	RESET	
	6.1 External Reset6.2 External Low Power Reset	24
	6.3 Internal Power-on and Brown-out Reset6.4 COP Watchdog Timer Reset	24
	6.5 Illegal Address Reset	24
7.0	INTERRUPTS	25
	 7.1 Software Interrupt. 7.2 External Interrupts 7.3 CMT Interrupt. 7.4 Core Timer Interrupt. 	25 25
8.0	OPERATION MODES.	
	8.1 User Mode 8.2 Learning Mode	

Remote Controller MCU SST65P542R

Data Sheet

9.0	PERIPHERALS AND OTHERS	27
	9.1 Core Timer	27
	9.2 Carrier Modulator Transmitter (CMT) 2	27
	9.3 Clock Input Options	27
	9.4 Crystal/Ceramic Resonator	27
	9.5 External Clock Drive	27
10.0	POWER SAVING MODES	28
	10.1 STOP Mode	28
	10.2 IDLE Mode	28
11.0	ELECTRICAL SPECIFICATION	29
11.0	ELECTRICAL SPECIFICATION 2 11.1 Absolute Maximum Stress Ratings 2	
11.0		29
11.0	11.1 Absolute Maximum Stress Ratings 2	29 29
11.0	11.1 Absolute Maximum Stress Ratings 2 11.2 Reliability Characteristics 2	29 29 29 29
11.0	11.1 Absolute Maximum Stress Ratings 2 11.2 Reliability Characteristics 2 11.3 DC Specifications 2	29 29 29 30
	11.1 Absolute Maximum Stress Ratings 2 11.2 Reliability Characteristics 2 11.3 DC Specifications 2 11.4 DC Electrical Characteristics 3	29 29 29 30 31

LIST OF FIGURES


FIGURE 2-1: Pin Assignments for 28-lead SOIC
FIGURE 3-1: Memory Map
FIGURE 4-1: Port B Interrupt and Pull-Up Options
FIGURE 6-1: Reset Block Diagram 24
FIGURE 9-1: Using the Crystal
FIGURE 9-2: External Clock Drive
FIGURE 10-1: Stop Mode and Idle Mode 28
FIGURE 11-1: External Host Programming Mode - Setup Cycle Timing Diagram
FIGURE 11-2: External Host Programming Mode - Read Cycle Timing Diagram
FIGURE 11-3: External Host Programming Mode - Write Cycle Timing Diagram
FIGURE 11-4: External Host Programming Mode - Chip-Erase Timing Diagram
FIGURE 11-5: External Host Programming Mode Sector-Erase Timing Diagram
FIGURE 11-6: External Host Programming Mode Byte-Program Timing Diagram
FIGURE 11-7: AC Input/Output Reference Waveform
FIGURE 11-8: A Test Load Example
FIGURE 11-9: Byte-Program Command Sequence for External Host Programming Mode
FIGURE 11-10: Wait Options for External Host Programming Mode
FIGURE 11-11: Chip-/Sector-Erase Command Sequence for External Host Programming Mode 38

LIST OF TABLES

TABLE	2-1: Pin Descriptions	. 6
TABLE	3-1: Register Descriptions and Bit Definitions	. 8
TABLE	3-5: Interrupt/Reset Sector	19
TABLE	5-1: SFFR Commands	21
TABLE	5-2: External Host Programming Mode Pin Descriptions	22
TABLE	5-3: External Host Programming Mode Pin Assignment	23
TABLE	5-4: Software Command Sequence	23
TABLE	8-1: Pin Assignment For Different Operation Modes	26
TABLE	11-1: Reliability Characteristics	29
TABLE	11-2: Recommended DC Operating Conditions	29
TABLE	11-3: DC Electrical Characteristics	30
TABLE	11-4: Control Timing	31
TABLE	11-5: External Host Programming-Mode Timing Parameters	31
TABLE	13-1: Revision History	41

1.0 FUNCTIONAL BLOCKS

2.0 PIN ASSIGNMENTS

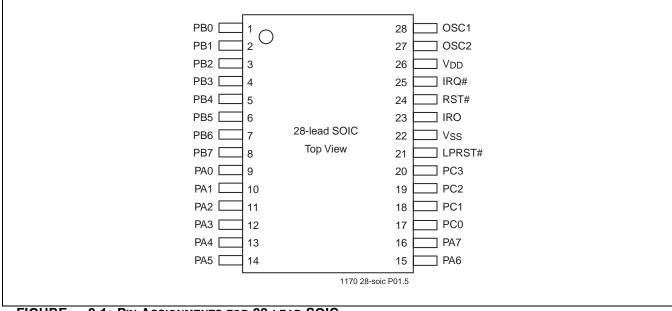
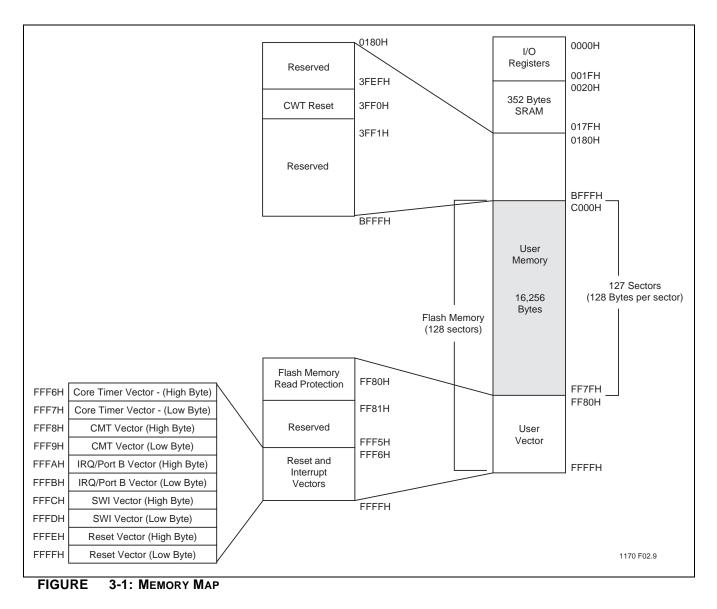


FIGURE 2-1: PIN ASSIGNMENTS FOR 28-LEAD SOIC

2.1 Pin Descriptions

Symbol	Туре	Name and Functions
PA[7:0]	I/O ¹	Port A: The state of any pin in Port A is software programmable and every line is configured as an input during any reset.
PB[7:0]	I/O	Port B: The state of any pin in Port B is software programmable and every line is configured as an input during any reset. Each I/O line contains a programmable interrupt/pull-up for keyscan.
PC[3:0]	I/O	Port C: Every pin in Port C is a high-current pin and its state is software programmable. All lines are configured as inputs during any reset.
IRO	0	IRO: Suitable for driving IR LED biasing logic, the IRO pin is the high-current source and sink output of the carrier modulator transmitter subsystem. Default state is low after any reset.
LPRST#	I	Low-Power Reset: An active-low pin, LPRST# function sets MCU to low-power reset mode. Once the device is in low-power reset mode, it is held in reset with all processor clocks and crystal oscillator halted. An internal Schmitt trigger is included in the LPRST# pin to improve noise immunity.
RST#	I	Reset: By setting the RST# pin low, the device is reset to a default state. An internal Schmitt trigger is included in the RST# pin to improve noise immunity.
OSC1	I	Oscillator 1,2: These 2 pins interface with external oscillator circuits. A crystal
OSC2	0	resonator, a ceramic resonator, or an external clock signal can be used.
IRQ#	I	Interrupt Request: The IRQ# is negative edge-sensitive triggered. An internal Schmitt trigger is included in the IRQ# pin to improve noise immunity.
V _{DD}	PWR	Power Supply: Supply Voltage (2.2-3.2V)
V _{SS}	PWR	Ground: Circuit ground. (0V reference)


1. I = Input, O = Output

T2-1.14 1170

3.0 I/O REGISTERS AND MEMORY ORGANIZATION

The SST65P542R has a total of 64 KByte of addressable memory space. A memory map is located in Figure 3-1. The on-chip memory consists of 32 Bytes of I/O registers, 352 Bytes of SRAM, 16 KByte of user flash memory and 128 Bytes of user vectors.

3.1 I/O Registers

The 32 Bytes of I/O registers occupy address locations from 0000H to 001FH that include general purpose I/O registers, the SuperFlash Function Register, and on-chip peripheral control registers.

		Direct	Bit Address, Bit Symbol								
Symbol ¹	Description	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Value ^{2,3}
PORTA	Port A Data Register	0000H	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	00H
PORTB	Port B Data Register	0001H	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	00H
PORTC	Port C Data Register	0002H	-	-	-	-	PC3	PC2	PC1	PC0	00H
-	Reserved	0003H	-	-	-	-	-	-	-	-	-
DDRA	Port A Data Direction Register	0004H	DDRA7	DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0	00H
DDRB	Port B Data Direction Register	0005H	DDRB7	DDRB6	DDRB5	DDRB4	DDRB3	DDRB2	DDRB1	DDRB0	00H
DDRC	Port C Data Direction Register	0006H	-	-	-	-	DDRC3	DDRC2	DDRC1	DDRC0	00H
-	Reserved	0007H	-	-	-	-	-	-	-	-	-
CTSCR	Core Timer Control and Status Register	0008H	CTOF	RTIF	TOFE	RTIE	TOFC	RTFC	RT1	RT0	03H
CTCR	Core Timer Counter Register	0009H	CTD7	CTD6	CTD5	CTD4	CTD3	CTD2	CTD1	CTD0	00H
PBIC	Port B Interrupt Control Register	000AH	INPRB7	INPRB6	INPRB5	INPRB4	INPRB3	INPRB2	INPRB1	INPRB0	00H
SFFR	SuperFlash Function Register	000BH	PREN	MEREN	SEREN	-	PROG	MERA	SERA	-	00H
PBPUC	Port B Pull-up Control Register	000CH	-	-	-	-	-	-	PU1	PU0	03H
CWTC	CWT Control Register	000DH	-	-	-	-	-	-	-	CWT_EN	0000001b
-	Reserved	000EH	-	-	-	-	-	-	-	-	-
-	Reserved	000FH	-	-	-	-	-	-	-	-	-
CHR1	Carrier Generator High Data Register 1	0010H	IROLN	CMTPOL	PH5	PH4	PH3	PH2	PH1	PH0	00UUUUUUb
CLR1	Carrier Generator Low Data Register 1	0011H	IROLP	-	PL5	PL4	PL3	PL2	PL1	PL0	00UUUUUUb
CHR2	Carrier Generator High Data Register 2	0012H	-	-	SH5	SH4	SH3	SH2	SH1	SH0	00UUUUUUb

 TABLE
 3-1: REGISTER DESCRIPTIONS AND BIT DEFINITIONS (1 OF 2)

		Direct		Reset							
Symbol ¹	Description	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value ^{2,3}
CLR2	Carrier Generator Low Data Register 2	0013H	-	-	SL5	SL4	SL3	SL2	SL1	SL0	00UUUUUUb
MCSR	Modulator Control and Status Register	0014H	EOC	DIV2	EIMSK	EXSPC	BASE	MODE	EOCIE	MCGEN	00H
MDR1	Modulator Data Register 1	0015H	MB11	MB10	MB9	MB8	SB11	SB10	SB9	SB8	UUUUUUUb
MDR2	Modulator Data Register 2	0016H	MB7	MB6	MB5	MB4	MB3	MB2	MB1	MB0	UUUUUUUb
MDR3	Modulator Data Register 3	0017H	SB7	SB6	SB5	SB4	SB3	SB2	SB1	SB0	UUUUUUUb
PSCR	Power Saving Control Register	0018H	EN	-	-	-	-	-	STOP	IDL	10000011b
-	Reserved	0019H	-	-	-	-	-	-	-	-	-
-	Reserved	001AH	-	-	-	-	-	-	-	-	-
-	Reserved	001BH	-	-	-	-	-	-	-	-	-
-	Reserved	001CH	-	-	-	-	-	-	-	-	-
-	Reserved	001DH	-	-	-	-	-	-	-	-	-
-	Reserved	001EH	-	-	-	-	-	-	-	-	-
-	Reserved	001FH	-	-	-	-	-	-	-	-	-
CWTC	COP Watchdog Timer Reset Register	3FF0H	-	-	-	-	-	-	-	CWT_CLR	01H

3-1: REGISTER DESCRIPTIONS AND BIT DEFINITIONS (CONTINUED) (2 OF 2) TABLE

"-" = reserved bits
 "U" = unaffected by any reset

3. These registers can be reset by either external or internal reset.

T3-1.8 1170

PORT A Data Register (PORTA)

PA[7:0]

SST65P542R

Remote Controller MCU

Location	7	6	5	4	3	2	1	0	Reset Value
0000H	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	00H

Symbol	Function
--------	----------

Port A data register bit 0 to 7. These bits are for both reading and writing. Write the data to this register will output data to port A pins when it's in output mode. If the pins are set to input mode, only the output data register is updated, port A pins are tri-stated. Reading the data from this register will read the state of port A pins when set in input mode. If the pins are set to output mode, it reads the output data register. See Table 3-2 for details. For a detailed explanation of each parallel I/O port, please refer to Section 4.0, "Parallel Input/Output Ports" on page 20.

PORT B Data Register (PORTB)

PB[7:0]

Location	7	6	5	4	3	2	1	0	Reset Value
0001H	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	00H

Symbol Function

Port B data register bit 0 to 7. These bits are for both reading and writing. Writing data to this register will output data to port B pins when it's in output mode. If the pins are set to input mode, only the output data register is updated, port B pins are tri-stated. Reading the data from this register will read the state of port B pins when set in input mode. If the pins are set to output mode, it reads the output data register. See Table 3-2 for details.

PORT C Data Register (PORTC)

Location	7	6	5	4	3	2	1	0	Reset Value
0003H	-	-	-	-	DDRC3	DDRC2	DDRC1	DDRC0	00H

Symbol Function

PC[3:0] Port C data register bit 0 to 3. These bits are for both reading and writing. Writing data to this register will output data to port C pins when it's in output mode. If the pins are set to input mode, only output data register is updated, port C pins are tri-stated. Reading data from this register will read the state of port C pins when set in input mode. If the pins are set to output mode, it reads the output data register. See Table 3-2 for details.

TABLE	3-2:	I/O PIN FUNCTIONS AS GENERAL PURPOSE I/O
-------	------	--

Access	DDRA, DDRB, DDRC	Mode	I/O Pin Functions				
Write	0	Input	Data is written into the output data register.				
Write	1	Output	Data is written into the output data register and output to the I/O pins.				
Read	0	Input	The state of I/O is read				
Read	1	Output	The output data register is read				

T3-2.0 1170

PORT A Data Direction Register (DDRA)

Location	7	6	5	4	3	2	1	0	Reset Value
0004H	DDRA7	DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0	00H
	Symbol DDRA[7:0]	See Tal 0: Port /		•	t 0 to 7. The	ese bits are f	or both read	ling and wri	ting.

PORT B Data Direction Register (DDRB)

Location	7	6	5	4	3	2	1	0	Reset Value
0005H	DDRB7	DDRB6	DDRB5	DDRB4	DDRB3	DDRB2	DDRB1	DDRB0	00H
	SymbolFunctionDDRB[7:0]Port B data direction register bit 0 to 7. These bits are for both reading and writ See Table 3-2 for details.								

- 0: Port B is input
- 1: Port B is output

PORT C Data Direction Register (DDRC)

Location	7	6	5	4	3	2	1	0	Reset Value
0006H	-	-	-	-	PC3	PC2	PC1	PC0	00H

Symbol	Function
DDRC[3:0]	Port C data direction register bit 0 to 3. These bits are for both reading and writing. See Table 3-2 for details.
	0: Port C is input
	1: Port C is output

PORT B Interrupt Control Register (PBIC)

Location	7	6	5	4	3	2	1	0	Reset Value
000AH	INPRB7	INPRB6	INPRB5	INPRB4	INPRB3	INPRB2	INPRB1	INPRB0	00H

SymbolFunctionINPRB[7:0]Port B interrupt control bits
0: Interrupt is enabled

1: Interrupt is disabled

PORT B Pull-up Control Register (PBPUC)

Location	7	6	5	4	3	2	1	0	Reset Value
000CH	-	-	-	-	-	-	PU1	PU0	03H

Symbol Function

PU1,PU0 Port B pull-up control bits. The following table shows pull-up strength. Defaults to strong pull-up when reset.

TABLE 3-3: PULL-UP CONTROL BIT DESCRIPTION

PU1	PU0	Pull-up	
0	0	No pull-up for Port B bit	
0	1	Weak pull-up for each Port B bit	
1	0	Weak pull-up for each Port B bit	
1	1	Strong pull-up for each Port B bit ¹	
			T3-3.1 1170

1. Default value after Power-on or Reset

Location	7	6	5	4	3	2	1	0	Reset Value				
0008H	CTOF	RTIF	TOFE	RTIE	TOFC	RTFC	RT1	RT0	03H				
	Symbol CTOF	Function Core tir		/ bit. CTOF i	is a real-only	v status bit.	this bit is set	t when the 8	3-bit ripple counter				
		rolls ov	rolls over from FFH to 00H. Writing to this bit has not effect. Reset clears CTOF. CTOF set to zero by writing a one to TOFC.										
	RTIF	 Real-time Interrupt bit. RTIF is a read-only status bit. Writing has no effect on this bit. Reset clears RTIF. The real time interrupt circuit consists of a divider and a one-of-four selector. The input clock frequency that drives the RTI circuit is E/2¹² with three additional divider stages that allows a maximum interrupt period of 16 ms at the internal peripheral clock rate of 2.048 MHz. 0: Writing a one to RTFC clears the RTIF. 1: When the output of the chosen (one-of-four selector) stage goes active. 											
	TOFE	Timer overflow enable bit. TOFE is statuses bit for both read and write. Reset clears this bit. 0: If the CTOF is not set or no timer overflow occurs. 1: If the CTOF is set and a CPU interrupt request is generated											
	RTIE	Real time interrupt enable bit. RTIE is a status bit for both read and write. Reset clears this bit. 0: If the RTIF is not set. 1: If the RTIF is set and a CPU interrupt request is generated.											
	TOFC	Timer overflow flag clear bit. This bit is for writing only. 0: Writing a zero has no effect on the CTOF bit. This bit always reads as zero. 1: When a one is written to this bit, CTOF is cleared.											
	RTFC	Real time interrupt flag clear bit. This bit is for writing only.0: Writing a zero has no effect on the RTIF bit. This bit always reads as zero.1: When a one is written to this bit, RTIF is cleared.											
	RT[1:0]	See Ta maximu uncerta during a	ble 3-4. Res um. Care sh iin. The CW	set sets the ould be take T should be hich the cou	se two bits, en when alte e cleared bef	which selec ering RT0 ar fore changir	ts the lowe d RT1 if the g RTI taps.	st periodic r timeout per If the select	the interrupt logic. rate and gives the riod is imminent or ted tap is modified an additional one				

Core Timer Control Status Register (CTCSR)

TABLE	3-4:	RTI AND CWT RATES AT 4.096 MHz OSCILLATOR, PRESCALER=1	
-------	------	--	--

RTI	Rate	RT1-RT0	Minimum C	CWT Rates	Maximum CWT Rates		
2ms	2 ¹² /E ¹	00	(2 ¹⁵ -2 ¹²)/E	14ms	(2 ¹⁵)/E	16ms	
4ms	2 ¹³ /E	01	(2 ¹⁶ -2 ¹³)/E	28ms	(2 ¹⁶)/E	32ms	
8ms	2 ¹⁴ /E	10	(2 ¹⁷ -2 ¹⁴)/E	56ms	(2 ¹⁷)/E	64ms	
16ms	2 ¹⁵ /E	11	(2 ¹⁸ -2 ¹⁵)/E	112ms	(2 ¹⁸)/E	128ms	
				•		T3-4.2 1170	

1. E is the internal peripheral clock frequency and E = $F_{OSC}/2$

Core Timer Counter Register (CTCR)

Location	7	6	5	4	3	2	1	0	Reset Value
0009H	CTD7	CTD6	CTD5	CTD4	CTD3	CTD2	CTD1	CTD0	00H

CTD[7:0] The core timer counter register bit 0 to bit 7. This is a read only status register in which contains the current value of the 8-bit ripple counter. This counter is clocked by the CPU clock (E/4) and can be used for various functions, including a software input capture. Extended time can be achieved by using the timer overflow function to increment a variable to simulate a 16-bit counter.

SuperFlash Function Register (SFFR)

-		-							-				
Location	7	6	5	4	3	2	1	0	Reset Value				
000BH	PREN	MEREN	SEREN	-	PROG	MERA	SERA	-	00Н				
	Symbol	Functio	Function										
	PREN	Byte pr	Byte program enable bit.										
		0: Disable the byte program.											
		1: Enable the byte program.											
	MEREN	Mass (chip) program enable.											
		0: Disal	0: Disable the mass (chip) erase or program.										
		1: Enat	ole the mass	(chip) eras	e or prograr	n.							
	SEREN	Sector program enable.											
		0: Disal	ble the secto	or erase or p	orogram.								
		1: Enab	ole the secto	r erase or p	rogram.								
	PROG	Byte pr	ogram contr	ol bit.									
		0: Not p	performs the	byte progra	am								
		1: Perfo	orms the byt	e program.									
	MERA	Mass (d	chip) progra	m active bit.									
		0: Not p	performs the	chip progra	m								
		1: Perfo	orms the chi	p program.									
	SERA	Sector	program act	ive bit.									
		0: Not p	performs the	sector prog	gram.								
	1: Performs the sector program.												
T I (t a	O								

Therefore, when SFFR=22H, the MCU will perform the Sector-Erase, SFFR=44H, the MCU will perform the Chip-Erase, and SFFR=88H, the MCU will perform the Byte-Program. For a detailed explanation of MCU flash control, please refer to Section 5.1, "In-Application Programming" on page 21.

COP Wate	hdog Time	er Control I	Register (C	CWTC)					
Location	7	6	5	4	3	2	1	0	Reset Value
000DH	-	-	-	-	-	-	-	CWT_EN	01H
	Symbol	Functio	on						
	CWT_EN	COP w	atchdog tim	er enable bi	t.				
		0: COP	watchdog t	imer is enal	oled.				
		1: COP	watchdog t	imer is disa	bled.				
	hdog Time	or Rosot Re	aistor (CV						
Location	7	6	5	4	3	2	1	0	Reset Value
3FF0H	-	-	-	-	-	-	-	CWT_CLR	01H
011011									0111
	Symbol	Function							
	CWT_CLR	This bit Sectior		g only. For c	letail explan	ation of CO	P Watchdo	g Timer Res	et, please refer to
				s bit will clea	r COP watc	hdoa timer			
						this bit will a	lwavs retur	ns one	
		1. 00110					iwayo iotan		
Carrier Ge	enerator Hi	gh Data Re	egister1 (C	HR1)					
Location	7	6	5	4	3	2	1	0	Reset Value
0010H	IROLN	CMTPOL	PH5	PH4	PH3	PH2	PH1	PH0	00UUUUUUb
	Symbol	Function	on						
	IROLN								g IROLN updates
									al processor clock
			•			-		•	N will also update LN will update the
		•	•	-		ata of CMT		•	
	CMTPOL	CMT o	utput polarity	y bit. This bi	t controls th	e polarity of	the CMT ou	utput (IRO).	
		0: the C	CMT output	is active hig	h.				
		1: the C	CMT output	is active low					
	PH[5:0]		-						e number of input
									mer mode, CHR1 and CHR2, CLR2
									high and low time
							written to n	on-zero valu	les that before the
			•		avoid spuric				
	Bit 0 to Bit	7 of CHR1 c	an be used	for both rea	ding and wr	iting.			

Note:"U" indicates that the bit is unaffected after reset.

Carrier Generator Low Data Register1 (CLR1)

Location	7	6	5	4	3	2	1	0	Reset Value	
0011H	IROLP	-	PL5	PL4	PL3	PL2	PL1	PL0	00UUUUUUb	
	Symbol IROLP	the IRC (F _{OSC} /2	ch control bi) latch with ?). Writing to	the data be CLR1 to u	ing written o pdate IROL	on the nega P will also u	tive edge o	f the interna rimary carri	ng IROLP updates al processor clock er low data value.	
	PL[5:0]	Primary carrier low time data values. The function of these bits is the same as PH[5:0].								

Carrier Generator High Data Register2 (CHR2)

Location	7	6	5	4	3	2	1	0	Reset Value
0012H	-	-	SH5	SH4	SH3	SH2	SH1	SH0	00UUUUUUb

Symbol Function

SH[5:0]

Secondary carrier high time data values. When selected, these bits contain the number of input clocks required to generate the carrier high time periods. When operating in time mode, CHR2 and CLR2 is never selected. When operating in FSK mode, CHR2, CLR2 and CHR1, CLR1 are alternately selected under control of the modulator. The secondary carrier high and low time values are undefined on the reset. These bits must be written to nonzero values before the carrier generator is enabled when operating in FSK mode.

Carrier Generator Low Data Register2 (CLR2)

	Symbol	Functio	on						
0013H	-	-	SL5	SL4	SL3	SL2	SL1	SL0	00UUUUUb
Location	7	6	5	4	3	2	1	0	Reset Value

SL[5:0] Secondary carrier low time data values. The function of these bits is the same as SH[5:0].

Location	7	6	5	4	3	2	1	0	Reset Value					
0014H	EOC	DIV2	EIMSK	EXSPC	BASE	MODE	EOCIE	MCGEN	00H					
001411		5.112	Linion	2,101 0	Bride	mobe	20012	moolit	0011					
	Symbol	Functio	on											
	EOC	betweer cycle, th loaded by an ar 0: curre	n the conter ne counter is with the spa	nts of the sp s initialized v ace period b DR2 or MDF on cycle in p	bace period with the con buffer SBUF R3. EOC is o progress.	register SR tents of the	EG and the mark perioc is cleared b	e down cour I buffer, MBl	a match occurs nter. At the end of JFF and SREG is e MCSR followed					
	DIV2	rate, wh double 0: divide	 Divide by two scaler bit. The divide-by-two prescaler causes the CMT to be clocked at the bus rate, when the two times of bus rate is enabled and the F_{OSC} is disabled. Since this bit is not double buffered, this bit should not be set during a transmission. 0: divide-by-two prescaler disabled. 1: divide-by-two prescaler enabled. 											
	EIMSK	cleared 0: IRQ a	External Interrupt Mask bit. This bit is used to mask IRQ and keyscan interrupts. This bit is cleared by reset.0: IRQ and keyscan interrupts enabled.1: IRQ and keyscan interrupts disabled.											
	EXSPC	Extended Space Enable bit. For detailed description of extended space operation, please refe to 65P542R Programming User's Manual. 0: Extended space disabled. 1: Extended space enabled												
	BASE	generat the can register during a 0: Base	ion of basel	band protoc toggles at t s cleared by on. ed.	ols. When E he frequen	BASE is clea cy determin	ared, the ca led by value	rrier generat es stored ir	rier output high for tor is enabled and in the carrier data uld not be written					
	MODE	written o 0: CMT	elect bit. Th during a trar operates in operates in	nsmission. Time mode	Э.	et. This bit i	s not doubl	e buffered a	and should not be					
	EOCIE	Otherwi 0: interr	t enable bit ise, interrup upt disabled upt enabled	t will not be 1.	•	be generati	ed when E(OC is set a	nd EOCIE is set.					
	MCGEN	will ena continue 0: if this modula operatic This bit All bits e	able all clo ously. s bit is zero, tor clocks a on, the user is cleared b	the current are disabled should init y reset. can be use	enabled, t t modulator d and the n ialize all da d for both re	the carrier cycle will b nodulator of ta and cont ading and v	generator e allowed to utput is foro rol registers	and modula o expire befo xed low. To	and modulator and ator will function ore all carrier and prevent spurious abling the system.					

Modulator Control and Status Register (MCSR)

Modulator Data Register 1 (MDR1)

Location	7	6	5	4	3	2	1	0	Reset Value
0015H	MB11	MB10	MB9	MB8	SB11	SB10	SB9	SB8	UUUUUUUb

Symbol Function

MB[11:8] MBUFF high 4 bits.

SB[11:8] SBUFF high 4 bits.

These bits can be used for both reading and writing.

Modulator Data Register 2 (MDR2)

Location	7	6	5	4	3	2	1	0	Reset Value
0016H	MB7	MB6	MB5	MB4	MB3	MB2	MB1	MB0	UUUUUUUb

Symbol Function

MB[7:0] MBUFF lower 8 bits. These bits can be used for both reading and writing.

Modulator Data Register 3 (MDR3)

Location	7	6	5	4	3	2	1	0	Reset Value
0016H	SB7	SB6	SB5	SB4	SB3	SB2	SB1	SB0	UUUUUUUb

Symbol Function

SB[7:0] SBUFF lower 8 bits. The bits can be used for reading and writing.

Power Saving Control Register (PSCR)

Location	7	6	5	4	3	2	1	0	Reset Value	
0018H	EN	-	-	-	-	-	STOP	IDL	10000011b	
	Symbol	Function	on							
	EN	This bit writing.	enable or d	isable MCU	to stop and	l idle mode.	This bit can	be used for	both reading and	
		0: STO	P and IDLE	mode enab	le					
		1: STO	P and IDLE	mode disat	ole.					
	STOP	Stop m	Stop mode enable bit							
		0: write	0: write 0 to this bit will make the device entering the stop mode if EN=0							
		1: write	1 to this bit	has no effe	ct. Read retu	urns one.				
	IDL	Idle mo	de enable b	it						
		0: write	0 to this bit	will make th	e device en	tering the id	le mode if E	N=0		
		1: write	1 to this bit	has no effe	ct. Read retu	urns one.				

3.2 SRAM

There are 352 Bytes of SRAM available. The SRAM addresses start from location 0020H to 017FH. The stack pointer can address 64 Bytes of stack beginning at address location 00FFH and ending at 00C0H.

3.3 SuperFlash Memory

The SST65P542R has 16 KByte of SuperFlash EEPROM memory. The memory is organized as 128 sectors of 128 Bytes each. The minimum erasable memory unit is one sector or 128 Bytes. The user programmable flash memory occupies the address space from C000H to FF7FH. The user vector area consists of 128 Bytes starting from address location FF80H to FFFFH. Address FF80H is for flash memory read protection. There are five predetermined user vectors from FFF6H through FFFFH dedicated to the reset and interrupts. Every vector consists of two bytes to be loaded into program counter for jumping to an interrupt service routine (ISR). See Table 3-5 for detailed descriptions of these vectors.

Address Location	User Vectors
FF80H	Flash Memory Read Protection
FF81H-FFF5H	Unused
FFF6H	Core Timer Vector - (High Byte)
FFF7H	Core Timer Vector - (Low Byte)
FFF8H	CMT Vector (High Byte)
FFF9H	CMT Vector (Low Byte)
FFFAH	IRQ/Port B Vector (High Byte)
FFFBH	IRQ/Port B Vector (Low Byte)
FFFCH	SWI Vector (High Byte)
FFFDH	SWI Vector (Low Byte)
FFFEH	Reset Vector (High Byte)
FFFFH	Reset Vector (Low Byte)

TABLE 3-5: INTERRUPT/RESET SECTOR

T3-5.5 1170

4.0 PARALLEL INPUT/OUTPUT PORTS

4.1 Port A

Port A consists of eight individual pins driven by one data register and one direction register to control the usage of these pins as either inputs or outputs. All Port A pins are set to Input mode during any Reset. Software must set the right direction register first before performing any Read or Write operation. Any Read operation to the port that was set as output will read back the data from an internal latch register instead of the I/O pins. For details, please refer to Section 3.1 Port A data register and Port A data direction register.

4.2 Port B

Port B pins are similar to Port A pins except that each of the Port B pins has a programmable interrupt generation option which can be enabled for any Port B pins. Port B pins have optional programmable pull-ups. There is a choice between pull-up strengths which could be selected by PU0 or PU1. For details, please refer to Section 3.1, Port B Interrupt Control Register and Port B Pull-up Control Register.

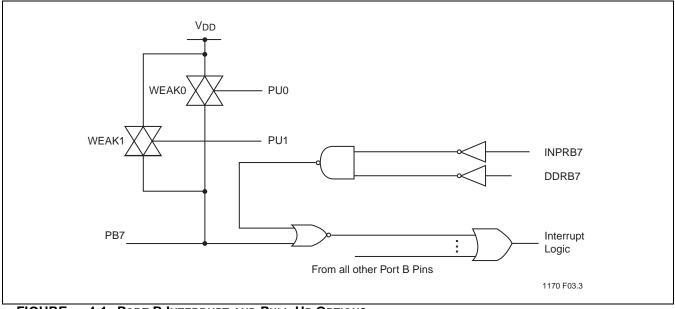


FIGURE 4-1: PORT B INTERRUPT AND PULL-UP OPTIONS

4.3 Port C

Port C is a 4-bit bi-directional port (PC3-PC0). Every Port C pin has high current driving capability. Reset clears the Port C Data Register and the data direction register, thereby returning the ports to inputs. For details, please refer to Section 3.1 Port C data register and Port C data direction register.

5.0 FLASH MEMORY PROGRAMMING

5.1 In-Application Programming

SST65P542R allows "In-Application Programming" (IAP) to update the user code in the internal 16 Kbyte Super-Flash memory. All Write/Erase operations require setting the enable bit in the SuperFlash Function Register (SFFR) located at 000BH. The following sections describe the operations that the MCU performs to alter the contents of SuperFlash Memory. For detailed explanation of the Super-Flash Function Register, please refer to Section 3.1.

5.1.1 Chip-Erase

The Chip-Erase operation requires MEREN and MERA bits to be set to logical "1". After setting these bits, writing any data to any address location of the flash memory will trigger the Chip-Erase operation. The MCU is idle while SST65P542R is busy doing erases on all memory locations.

5.1.2 Sector-Erase

The Sector-Erase operation requires SEREN and SERA bits to be set to logical "1". After setting these bits, writing any data to the address within the sector to be erased will erase the data in the sector. The MCU is idle while SST65P542R is busy doing erase on the sector.

5.1.3 Byte-Program

The Byte-Program operation requires PREN and PROG bits to be set to logical "1". After setting these bits, and then writing the data to the target address to be programmed. The MCU is idle while SST65P542R is busy doing programming on the byte. Refer to the following summary for all different functions.

TABLE	5-1:	SFFR	COMMANDS
-------	------	------	----------

Function	Command Writes to SFFR	Comment
Chip-Erase	44H	Erase the whole flash memory
Sector-Erase	22H	Erase the sector addressed by CXXXH
Byte-Program	88H	Program one data byte to address CXXXH. Write data to CXXXH before Byte-Program can be performed, a Chip-Erase or Sector-Erase must be issued to erase the target programming locations.

T5-1.1 1170

5.2 External Host Programming Mode

The external host programming mode is to provide programmer access to the 16KB embedded flash memory of the SST65P542R. To enter the external host programming mode, users must follow the setup sequences on the pins (See Figure 11-1):

- 1. RY/BY# (pin 12) and POROUT# (pin 13) are output pins. Do not drive.
- 2. Drive RST# (pin 24) low.
- 3. Drive LPRST# (pin 21) low.
- 4. Drive LPRST# (pin 21) high after T_{RST}.
- 5. Drive PROG_RST (pin 9) low.
- 6. Drive 9 clocks on TCLKIN. On each clock's rising edge provide one bit of data on TDIN (pin 19) as shown in Figure 11-1. The data bits are "11010011".
- 7. Wait for RY/BY# (pin 12) and POROUT# to go high.
- 8. Drive at least 24 clocks on TCLKIN.
- If Read-protect byte is set, then RY/BY# will go low. Otherwise, RY/BY# will stay high. If RY/BY# is low, wait for RY/BY# (pin 12) to go high. Now the SST65P542R is in external host programming mode and is ready for embedded flash Read or Write operations.

Now the SST65P542R is in the external host programming mode and is ready for embedded flash by the external host Read or Write.

As soon as the RST# is released to '1', chip exits external host programming mode and then enters user mode.

5.2.1 External Host Mode Read Operation

As shown in Figure 11-2, the Read operation needs two address setup cycles and one data setup cycle. The low to high transition on SCLK latches the high order address A[13:8] from the pin AD[5:0] while MODE[1:0] inputs are set to 0H; the low to high transition on SCLK latches the low order address A[7:0] from the pin AD[7:0] while the MODE[1:0] inputs are set to 3H and setting the signal OE# to low; the low to high transition on SCLK latches the data D[7:0] on the pin AD[7:0] while the MODE[1:0] is set to 1H for reading. After reading the data, the external host should set the signal OE# to high.

5.2.2 External Host Mode Write Operation

As shown in Figure 11-3, the Write operation needs two address setup cycles and one data setup cycle. The low to high transition on SCLK latches the high order address A[13:8] from the pin AD[5:0] while the MODE[1:0] inputs are set to 0H; the low to high transition on SCLK latches the

low order address A[7:0] from the pin AD[7:0] while MODE[1:0] inputs are set to 2H; the low to high transition on SCLK latches the data D[0:7] from the pin AD[7:0] while the MODE[1:0] is set to 1H for writing. However, the actual Write operation to embedded flash memory occurs on the rising edge of WE#.

Pins	Symbol	Type ¹	Name and Functions
8-1	AD[7:0]	I/O ¹	Embedded flash memory address and data bus multiplex on AD[7:0] by selecting MODE[1:0]
10,20	MODE[1:0]	I	Address and data bus selection bits in the external host programming mode
11	SLCK	I	Clock for latch address and data after entering the external host programming mode
9	PROG_RST	I	Reset signal for the external host programming mode
13	POROUT#	0	Embedded flash memory power-on reset output
12	RY/BY#	0	Embedded flash Ready/Busy output. High is ready
17	WE#	I	Write Enable: embedded flash memory data write enable, low active
18	OE#	I	Output Enable: embedded flash memory data out enable, low active
21	LPRST#	I	Signal for entering the external host programming mode
19	TDIN	I	Data input for entering the external host programming mode
23	TCLKIN	I	This clock will latch TDIN for entering the external host programming mode
22	V _{SS}	PWR	Ground: Circuit ground (0V reference)
26	V _{DD}	PWR	Power Supply: Supply voltage (3.2V)

TABLE 5-2: EXTERNAL HOST PROGRAMMING MODE PIN DESCRIPTIONS

1. I = Input; O = Output

5.2.3 External Host Mode Byte-Program Operation

This device is programmed on a byte by byte basis. The Byte-Program operation consists of three steps. The first step is the three-byte load sequence for Software Data Protection. The second step is to load the byte address and the byte data. The third step is the internal Program operation which is initiated after the rising edge of the fourth WE#. The end of the Byte-Program operation can be determined by using the RY/BY#. Any commands written during the Byte-Program operation will be ignored. See Table 5-4 for the software command sequence, Figure 11-5 for the flash Byte-Program timing diagram, and Figure 11-9 for the Byte-Program command sequence flowchart.

5.2.4 External Host Mode Chip-Erase Operation.

The device provides a Chip-Erase operation, which allows the user to erase the entire memory array to the '1's state. This is useful when the device must be quickly erased entirely. The Chip-Erase operation is initiated by executing a six-byte Software Data Protection command sequence, the last byte Sequence is the address 1555H with the Chip-Erase command 10H. The Chip-Erase operation begins with of the sixth write enable's (WE#) rising edge. The end of the Chip-Erase can be determined by using the signal RY/BY#. Any commands written during the Chip-Erase operation will be ignored. See Table 5-4 for the software command sequence, Figure 11-4 for the flash Chip-Erase timing diagram, and Figure 11-11 for the Chip-Erase com-

T5-2.3 1170

5.2.5 External Host Mode Sector-Erase Operation

mand sequence flowchart.

The Sector-Erase operation allows the system to erase the device on a sector-by-sector basis. The sector architecture is based on uniform sector size of 128 Bytes. The Sector-Erase operation is initiated by executing a six-byte command sequence for Software Data Protection, the last byte sequence is the sector address SA with the Sector-Erase command 30H. The address lines A[13:7] will be used to determine the sector address. The internal Erase operation begins after the sixth write enable's (WE#) rising edge. The End-of-Erase can be determined by using the signal RY/ BY#. Any commands written during the Sector-Erase operation will be ignored. See Table 5-4 for the software command sequence, Figure 11-5 for the flash Sector-Erase timing diagram, and Figure 11-11 for the Sector-Erase command sequence flowchart.

5.2.6 Operation Status Detection - Program Timer Method

During the Program or Erase operation, the programmer can use the timer to decide the completion of the operation. When a Program or Erase operation is started, system setup a timer for T_{BP} (for Byte-Program), T_{SCE} (for Chip-Erase), and T_{SE} (for Sector-Erase) time period. After this timer time-out, the operation is completed. See Figure 11-10 for Program Timer flowchart.

5.2.7 Operation Status Detection - RY/BY# Method

During the internal Program or Erase operation, the signal RY/BY# indicates the status of the operation. When the internal Program or Erase operation is in progress, the signal RY/BY# will be driven low. When the internal Program or Erase operation is completed, the signal RY/BY# will be driven high. The device is then ready for the next operation. See Figure 11-10 for the Program Timer flowchart.

5.2.8 Exiting The External Host Programming Mode

To exit the external host programming mode, the external host must set the RST# pin to high, and the PROG_RST is reset to high. The device will exit the host programming and enter the user mode. The MCU starts execution codes out of the User Memory Space from the reset vector.

5.2.9 Flash Read Protection

To protect the program code from piracy the flash memory location 3F80H (user memory address FF80H, flash memorv is mapped to C000H through FFFFH. see Figure 3-1) is evaluated by the internal hardware to determine the read protect mode state. During this evaluation period, only the RY/BY# pin is valid and all other pins are blocked. If this byte is A3H (read protect is active), a Chip-Erase will be performed by internal hardware before the external host programming mode is activated. While the Chip-Erase could take T_{SCF} (See Table 11-5) as maximum time, users may use RY/BY# pin to determine the completion of the Chip-Erase. If this byte is not A3H (not read protected), all of the flash memory are visible by using the external host programming. During the internal Program or Erase operation, the signal RY/ BY# indicates the status of the operation. When the internal Program or Erase operation is in progress, the RY/BY# will be driven low. When the internal Program or Erase operation is completed, the RY/BY# will be driven high. The device is then ready for the next operation. See Figure 11-10 for the Program Timer flowchart.

Note: After writing A3H to the flash read protection register, the device needs to continue power-on prior to finishing the programming function. The programming function may include the Program-Verify function.

	MODE0=0 MODE1=0	MODE0=0 MODE1=1	MODE0=1 MODE1=0	MODE0=1 MODE1=1
AD[0]	Input A8	Input A0	Input D0	Output D0
AD[1]	Input A9	Input A1	Input D1	Output D1
AD[2]	Input A10	Input A2	Input D2	Output D2
AD[3]	Input A11	Input A3	Input D3	Output D3
AD[4]	Input A12	Input A4	Input D4	Output D4
AD[5]	Input A13	Input A5	Input D5	Output D5
AD[6]		Input A6	Input D6	Output D6
AD[7]		Input A7	Input D7	Output D7

TABLE 5-3: External Host Programming Mode Pin Assignment

T5-3.1 1170

T5-4 3 1170

 TABLE
 5-4: SOFTWARE COMMAND SEQUENCE

Command	1st Bus Cyc		2nd Bus Cyc		3rd Bus Cyc		4th Bus Cyc		5th Bus Cyc		6th Bus Cyc	
Sequence	Addr ¹	Data	Addr ¹	Data								
Sector-Erase	1555H	AAH	2AAAH	55H	1555H	80H	1555H	AAH	2AAAH	55H	SA _X ²	30H
Chip-Erase	1555H	AAH	2AAAH	55H	1555H	80H	1555H	AAH	2AAAH	55H	1555H	10H
Byte-Program	1555H	AAH	2AAAH	55H	1555H	A0H	WA ³	Data				

1. Address format A₁₃-A₀ (Hex)

2. SA_X for Sector-Erase; uses A₁₃-A₇ address lines

3. WA = Program Byte address

6.0 RESET

The 65P542R can be reset from five sources: two external inputs and three internal restart conditions.

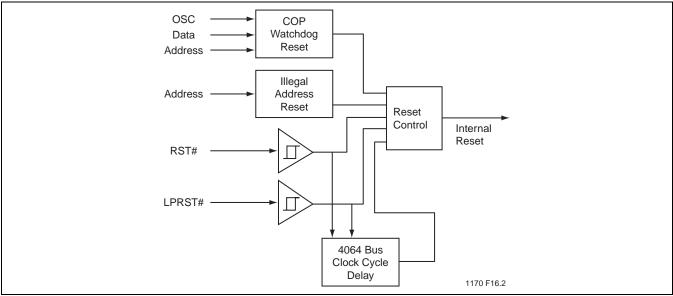


FIGURE 6-1: RESET BLOCK DIAGRAM

6.1 External Reset

A low-level input on the RST# pin causes the program counter to be set to the contents of location FFFEH and FFFFH (Reset Vector). The MCU is initialized to a known state. Stack pointer will be reset to FFH. Hardware Reset is the highest priority input to the chip. An internal Schmitt trigger is implemented on the RST# input to enhance the noise immunity.

6.2 External Low Power Reset

The LPRST# is one of the two external sources of a reset. The signal LPRST# allows the MCU to go into low power reset mode. All clocks and oscillator to the processor are halted when the LPRST# is held low. After the LPRST# is de-asserted (driven high), a delay of 4064 bus clock cycles is automatically enabled to wait for stable crystal oscillation. This pin also implements an internal Schmitt trigger to enhance the noise immunity.

6.3 Internal Power-on and Brown-out Reset

The internal power-on and brown-out reset signal will inhibit flash Erase or Program operations during the power-on or brown-out unstable period to prevent inadvertent Writes to flash memory. The reset signal only affects flash Erase and Program operations. It will not reset other circuits of the device. During power-up, the internal power-on reset is asserted before V_{DD} reaches V_{POR} . During power-down, the internal brown-out reset is asserted after V_{DD} drops below V_{BOR} . (See Table 11-2)

6.4 COP Watchdog Timer Reset

SST65P542R has a COP (Computer Operating Properly) watchdog timer for monitoring the proper operations of MCU. In normal operation, clearing the COP watchdog timer is executed by software within a preset period of time to avoid reaching time-out condition. To clear the COP watchdog timer, software write "0" to location 3FF0H. The COP Watchdog Reset is asserted and resets the MCU when the time-out condition occurs. The COP watchdog timer is disabled during any external reset. To enable CWT, write logical "0" to CWT control register (000DH). Refer to the SST65P542R Programming User's Manual for more information.

6.5 Illegal Address Reset

An illegal address reset is generated when the MCU attempts to fetch an instruction from I/O address space (0000H to 001FH). Those addresses are reserved for I/O registers only.

7.0 INTERRUPTS

SST65P542R accepts five sources of interrupts with highest to lowest priority: Software Interrupt, External Interrupts (IRQ# pin / Port B), CMT Interrupt, and Core Timer Interrupt. Whenever multiple interrupt requests are active at the same time, the higher priority one will be serviced first. All interrupts are maskable except Software Interrupt which is generated by executing SWI instruction. To mask interrupts, set the interrupt mask bit of Process Status Word (PSW). Before serving the interrupt, the MCU registers are pushed onto the stack in the sequence of PCL, PCH, IDX, ACC, PSW. The interrupt service routine should clear the source of interrupt before exiting. By executing RTI instruction, the stored MCU registers are popped from the stack and the program resumes from the interrupted location.

7.1 Software Interrupt

The SWI instruction causes MCU to load the contents of memory locations FFFCH and FFFDH into Program Counter regardless of the interrupt mask bit in PSW register.

7.2 External Interrupts

Upon completion of the current instruction, the MCU responds to the interrupt request that is latched internally. IRQ# must be asserted (low) for at least one T_{ILIH} (125 ns). Following the completion of the current instruction, the interrupt latch is tested. If both interrupt mask bit (I bit) in the PSW is clear and the interrupt request is pending, the interrupt service routine is entered. An external resistor to V_{DD} is required by the IRQ# input for wired-AND operation.

Data Sheet

The external interrupts, IRQ# pin and Port B interrupts are edge-sensitive and asserted on the falling edge of the pins. The Port B Interrupt Control Register enables or disables interrupts on each individual pin of port B. The External Interrupt Mask Bit (EIMSK) of Modulator Control and Status register can be used to mask all external interrupts so that lower priority interrupts such as timer interrupts can be served. The state of any external interrupt received during the masked period is preserved. When the EIMSK bit is clear, the pending interrupts activate the MCU interrupt processing again. The external interrupt causes MCU to load the contents of memory locations FFFAH and FFFBH into the Program Counter.

7.3 CMT Interrupt

A CMT interrupt is generated when the end of cycle flag (EOC) and the end of cycle interrupt enable (EOCIE) bits are set in the modulator control and status register (MCSR). This interrupt will vector to the interrupt service routine located at the address specified by the contents of memory locations FFF8H and FFF9H.

7.4 Core Timer Interrupt

The core timer is a 14-stage multifunctional ripple timer. User can select overflow or real-time interrupt by the setting of the Core Timer Control Status Register. Please see the timer section for more details. The timer interrupt causes MCU to load the contents of memory locations FFF6H and FFF7H into the Program Counter.

8.0 OPERATION MODES

The device can operate in two different modes. The Operation mode includes the User mode and the Learning mode. The pin definitions vary between different operation modes as described in Table 8-1.

8.1 User Mode

In the user mode, the embedded MCU fetches program codes from the user memory space. Please refer to the *SST65P542R Programming User's Manual* for instruction sets and the internal MCU programming information.

8.2 Learning Mode

To enter the learning mode, input the IR signal to the IRQ# pin, then use the BIL and BIH instruction set to record the input signal width. For detail information on learning mode, please refer to the application note *Remote Controller Learning Algorithm using SST65P542R*.

Pin #	Normal In	terface Modes	External Host Programming Mode ¹
	User Mode	Learning Mode	
1	PB[0]	PB[0]	AD[0]
2	PB[1]	PB[1]	AD[1]
3	PB[2]	PB[2]	AD[2]
4	PB[3]	PB[3]	AD[3]
5	PB[4]	PB[4]	AD[4]
6	PB[5]	PB[5]	AD[5]
7	PB[6]	PB[6]	AD[6]
8	PB[7]	PB[7]	AD[7]
9	PA[0]	PA[0]	PROG_RST
10	PA[1]	PA[1]	MODE[1]
11	PA[2]	PA[2]	SCLK
12	PA[3]	PA[3]	RY/BY#
13	PA[4]	PA[4]	POROUT#
14	PA[5]	PA[5]	V _{IL}
15	PA[6]	PA[6]	V _{IL}
16	PA[7]	PA[7]	VIH
17	PC[0]	PC[0]	WE#
18	PC[1]	PC[1]	OE#
19	PC[2]	PC[2]	TDIN
20	PC[3]	PC[3]	MODE[0]
21	LPRST#	LPRST#	LPRST#
22	V _{SS}	V _{SS}	V _{SS}
23	IRO	IRO	TCLKIN
24	RST#	RST#	V _{IL}
25	IRQ#	IRIN	VIH
26	V _{DD}	V _{DD}	V _{DD}
27	OSC2	OSC2	Do not use ²
28	OSC1	OSC1	VIL

TABLE 8-1: PIN ASSIGNMENT FOR DIFFERENT OPERATION MODES

1. See Table 5-2 for pin description.

2. OSC2 is an output, not used during external host program mode.

9.0 PERIPHERALS AND OTHERS

9.1 Core Timer

Core Timer provides the following features:

- 1. Real Time Interrupt (RTI)
- 2. Timer Overflow
- 3. COP watchdog timer
- 4. Power-on reset (POR)

Please refer to SST65P542R Programming User's Manual for programming information.

9.2 Carrier Modulator Transmitter (CMT)

SST65P542R integrates a carrier modulator transmitter for supporting various encoding methods. The purpose of this module is to reduce the loading of the MCU. Three major functions are performed by this block: carrier generation, modulation, and transmission.

Please refer to SST65P542R Programming User's Manual for programming information.

9.3 Clock Input Options

Control connections for the 2-lead on-chip oscillator are the OSC1 and OSC2 pins. OSC1 is input and OSC2 is output. A crystal resonator, ceramic resonator, or external clock signal can drive the oscillator.

9.4 Crystal/Ceramic Resonator

A crystal/ceramic oscillator circuit is shown in Figure 9-1. A ceramic resonator instead of a crystal may be used to reduce costs. It is recommended that the resonator and capacitors be mounted as close to the pins as possible to minimize output distortion.

Crystal manufacturer, supply voltage, and other factors may cause circuit performance to differ from one application to another. C1 and C2 should be adjusted appropriately for each design.

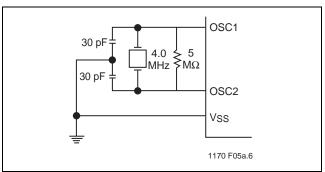


FIGURE 9-1: USING THE CRYSTAL

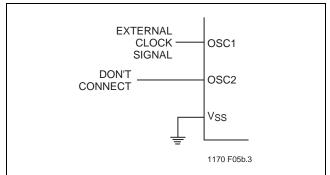


FIGURE 9-2: EXTERNAL CLOCK DRIVE

9.5 External Clock Drive

If external clock source is provided, OSC1 is the clock input and OSC2 is don't connect. Leave OSC2 open.

10.0 POWER SAVING MODES

SST65P542R provides two power saving modes: Stop mode and Idle mode. These two modes can be entered through the setting of the Power Saving Control Register. Refer to Section 3.1 for power saving control register.

10.1 STOP Mode

Writing a logic '0' to the STOP bit of the Power Saving Control Register enters the STOP mode. To achieve the lowest possible power consumption, the implementation uses STOP bit to gate off the internal clock. See Figure 10-1 for illustration of clock arrangement in the STOP mode. Since there is no clock input, the internal states are maintained and not changed including I/O registers and RAM memory except that the core timer counter bits are cleared. The external IRQ interrupt can brought the device out of the STOP mode, but all other interrupts are not served until the device is recovered from STOP mode. There are three conditions that will recover the device from the STOP mode: external IRQ#/Port B interrupt (EIMSK=0), RST# or external reset LPRST#. The STOP bit will be set to 1 when the device has been brought out of STOP mode. The interrupt mask bit (I bit) will not be affected.

10.2 IDLE Mode

Writing a logic '0' to the IDLE bit of the Power Saving Control Register enters the IDLE mode. In the IDLE mode, the timer is still running. Any internal or external interrupt will recover the device from IDLE mode. If both STOP and IDLE bits are '0', then STOP mode takes effect. The IDLE bit will be set to 1 when the device has been brought out of the IDLE mode. The interrupt mask bit (I bit) will not be affected.

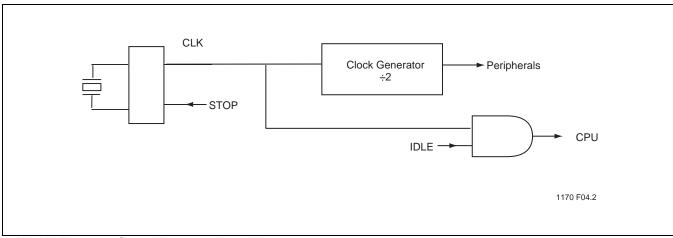


FIGURE 10-1: STOP MODE AND IDLE MODE

11.0 ELECTRICAL SPECIFICATION

11.1 Absolute Maximum Stress Ratings

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Ambient Temperature Under Bias	55°C to +125 °C
Storage Temperature	65 °C to + 150 °C
DC Voltage on Any Pin to Ground Potential	0.5V to V _{DD} +0.5V
Transient Voltage (<20 ns) on any Pin to Ground Potential	1.0V to V _{DD} +1.0V
Package Power Dissipation Capability (T _A = 25 °C)	1.0W
Surface Mount Solder Reflow Temperature ¹	
Output Short Circuit Current ²	100 mA

1. Excluding certain with-Pb 32-PLCC units, all packages are 260°C capable in both non-Pb and with-Pb solder versions. Certain with-Pb 32-PLCC package types are capable of 240°C for 10 seconds; please consult the factory for the latest information.

 Outputs shorted for no more than one second. No more than one output shorted at a time. (Based on package heat transfer limitations, not devices power consumption.)

11.2 Reliability Characteristics

TABLE	11-1: RELIABILITY	CHARACTERISTICS
-------	-------------------	-----------------

Symbol	Parameter	Minimum Specification	Units	Test Method
N _{END}	Endurance	10,000	Cycles	JEDEC Standard A117
T _{DR} ¹	Data Retention	100	Years	JEDEC Standard A103
I _{LTH} 1	Latch Up	100+I _{DD}	mA	JEDEC Standard 78
				T11-1.3 1170

1. The parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

11.3 DC Specifications

TABLE 11-2: RECOMMENDED DC OPERATING CONDITIONS (T_A= 0°C to +70°C)

Symbol	Parameter	Min	Мах	Unit
V _{DD}	Supply Voltage	2.2	3.2	V
T _A	Temperature	0	+70	°C
F _{OSC}	Osc. Frequency	0	8	MHz
V _{POR} ¹	Power-on Reset	2.0	2.2	V
V _{BOR} ¹	Brown-out Reset	1.9	2.1	V

T11-2.2 1170

1. Power-on reset and Brown-out reset only affect flash Erase and Program operations.

To avoid indeterministic MCU behavior and prevent inadvertent flash memory corruption, when supply voltage dips below VDD min, an external low voltage detection circuitry is required to generate reset signal to the chip. The trip point for this circuitry should be set at 2.2V±5%.

11.4 DC Electrical Characteristics

Symbol	Parameter	Min	Max	Тур	Unit
I _{DD} 1	Supply Current				
	Run without Flash Erase/Program Operation	-	8	2.5	mA
	Run with Flash Erase/Program Operation	-	20	10	mA
	Idle ²		2.75	0.8	mA
	Stop				
	25°		6	4	μA
	0°to +70°		15	9	μA
I _{OZ}	I/O Ports Hi-Z Leakage current				
	Port A, Port B, Port C	-10	10	-	μA
I _{IN}	Input Current				
	IRQL, RESETL, LPRSTL, OSC1	-1	1	-	μA
	Port B with Strong Pull-ups Enable ($V_{IN} = 0.2xV_{DD}$)	-34	-74	-50	
	Port B with Strong Pull-ups Enabled ($V_{IN} = 0.8 x V_{DD}$)	-15	-36	-25	
	Port B with Weak Pull-ups Enable ($V_{IN} = 0.2 x V_{DD}$)	-17	-37	-25	
	Port B with Weak Pull-ups Enabled ($V_{IN} = 0.8 x V_{DD}$)	-7.5	-18	-12.5	
	Output Voltage				
V _{OL}	(I _{LOAD} = 1 mA) OSC2	-	0.4	-	μA
V _{OH}	(I _{LOAD} = -500 μA) OSC2	V _{DD} -0.4	-	-	
V _{OH}	Output High Voltage				
	(I _{LOAD} = -1.2 mA) Port A, Port B	V _{DD} -0.4		V _{DD} -0.3	V
	(I _{LOAD} = -6 mA) IRO	V _{DD} -0.8		V _{DD} -0.3	
	(I _{LOAD} = -4 mA) Port C	V _{DD} -0.5		V _{DD} -0.3	
V _{OL}	Output Low Voltage				
	(I _{LOAD} = 1.8 mA) Port A, Port B		0.4	0.2	V
	(I _{LOAD} = 12 mA) IRO		0.8	0.3	
	(I _{LOAD} = 8 mA) Port C		0.5	0.3	
VIH	Input High Voltage				
	Port A, Port B, Port C, OSC1	0.8 V _{DD}	V_{DD}	-	V
	IRQL, RESETL, LPRSTL	0.8 V _{DD}	V_{DD}	-	
VIL	Input Low Voltage				
	Port A, Port B, Port C, OSC1	V _{SS}	0.2 V _{DD}	-	V
	IRQL, RESETL, LPRSTL	V _{SS}	0.2 V _{DD}	-	

1. Test conditions for I_{DD} are 8 MHz and 20 pf loading. 2. Idle current I_{DD} is 0.4 mA typical, 0.6 mA maximum at 4 MHz, 2.2V, and 20 pf loading.

11.5 AC Electrical Characteristics

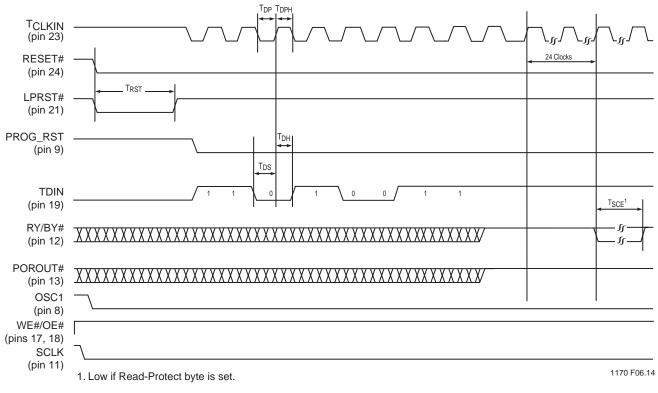
Symbol	Characteristic	Min	Max	Unit
	Frequency of operation			
Fosc	Crystal		8	MHz
F _{EXT}	External clock		8	MHz
F _{OP}	Internal Operating Frequency		4	MHz
T _{CYC}	Cycle Time	125		ns
T _{OXOV} ¹	Crystal Oscillator Startup Time		100	ms
T _{ILCH} 1	Stop Recovery Startup Time		100	ms
T _{RL} ¹	RST# Pulse Width	1.5		T _{CYC}
T _{ILIH} 1	Interrupt Pulse Width Low (Edge-Triggered)	125		ns
T _{OH} ,T _{OL} 1	OSC1 Pulse Width	90		ns

TABLE 11-4: CONTROL TIMING ($T_A = 0^{\circ}C$ to +70°C, $V_{DD} = 2.2$ to 3.2V, $V_{SS} = 0V$)

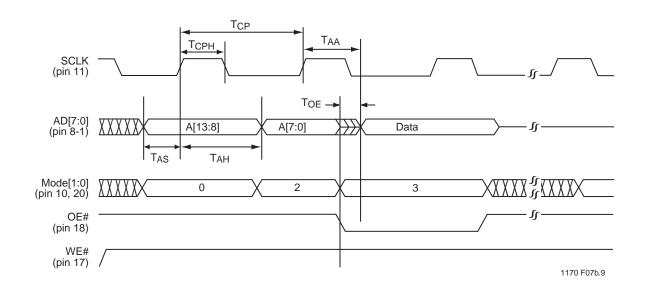
1. Guaranteed by design.

T11-4.2 1170

TABLE 11-5: External Host Programming-Mode Timing Parameters


Symbol	Parameter	Min	Max	Units
T _{AS} ¹	Address/Data Setup Time	30		ns
T _{CP} ¹	SCLK Cycle Time	130		ns
T _{AH} 1	Address/Data Hold Time	45		ns
T _{CPH} ¹	SCLK Pulse Width High	65		ns
T _{SE}	Sector-Erase Time ²		25	ms
T _{SCE}	Chip-Erase Time ²		120	ms
T _{BP}	Byte-Program Time ²		80	μs
T _{DH} ¹	TDIN Hold Time	45		ns
T _{DS} ¹	TDIN Setup Time	30		ns
T _{DP} ¹	TCLKIN Pulse Width	65		ns
T _{DPH} ¹	TCLKIN Pulse Width High	65		ns
T _{RST} 1	Reset Time	720		ns
T _{OE} ¹	Output Enable Time		50	ns
T _{WES} 1	Address Latch Setup Time	65		ns
T _{WEH} 1	Data Latch Setup Time	30		ns
T _{AA} 1	Read Access Time	65		ns
	·		•	T11-5.7 11

1. Guaranteed by design.


2. Applies to IAP as well

©2005 Silicon Storage Technology, Inc.

FIGURE 11-1: EXTERNAL HOST PROGRAMMING MODE - SETUP CYCLE TIMING DIAGRAM

FIGURE 11-2: EXTERNAL HOST PROGRAMMING MODE - READ CYCLE TIMING DIAGRAM

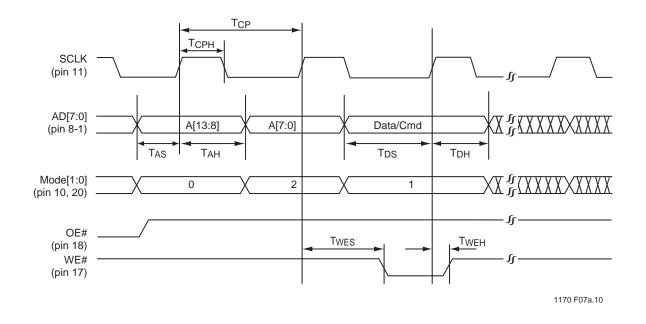
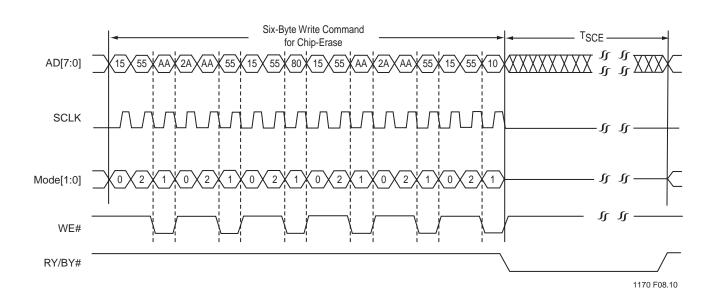



FIGURE 11-3: EXTERNAL HOST PROGRAMMING MODE - WRITE CYCLE TIMING DIAGRAM

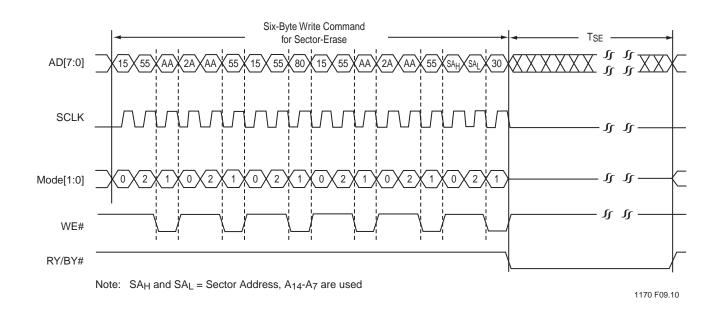
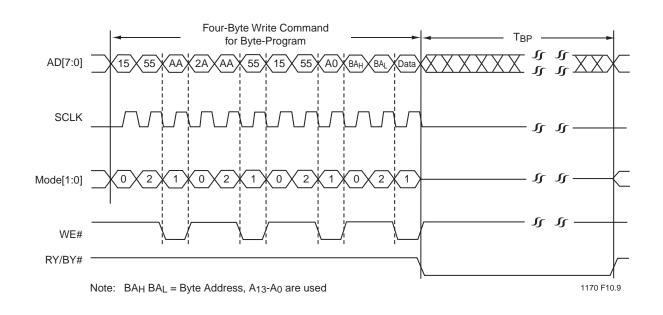


FIGURE 11-4: EXTERNAL HOST PROGRAMMING MODE - CHIP-ERASE TIMING DIAGRAM



Remote Controller MCU SST65P542R

Data Sheet

FIGURE 11-5: EXTERNAL HOST PROGRAMMING MODE SECTOR-ERASE TIMING DIAGRAM

FIGURE 11-6: EXTERNAL HOST PROGRAMMING MODE BYTE-PROGRAM TIMING DIAGRAM

Remote Controller MCU SST65P542R

Data Sheet

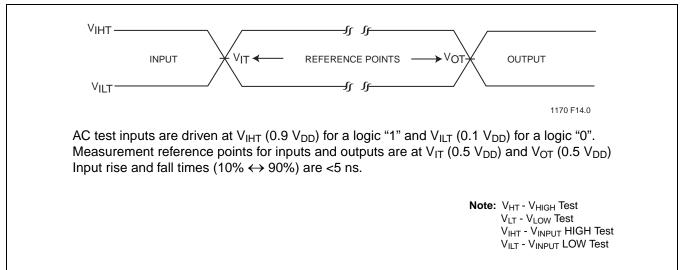


FIGURE 11-7: AC INPUT/OUTPUT REFERENCE WAVEFORM

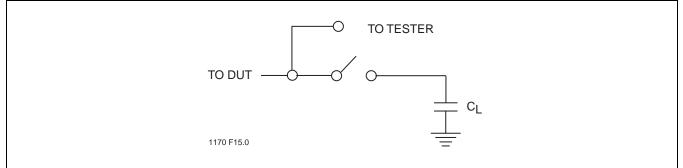


FIGURE 11-8: A TEST LOAD EXAMPLE

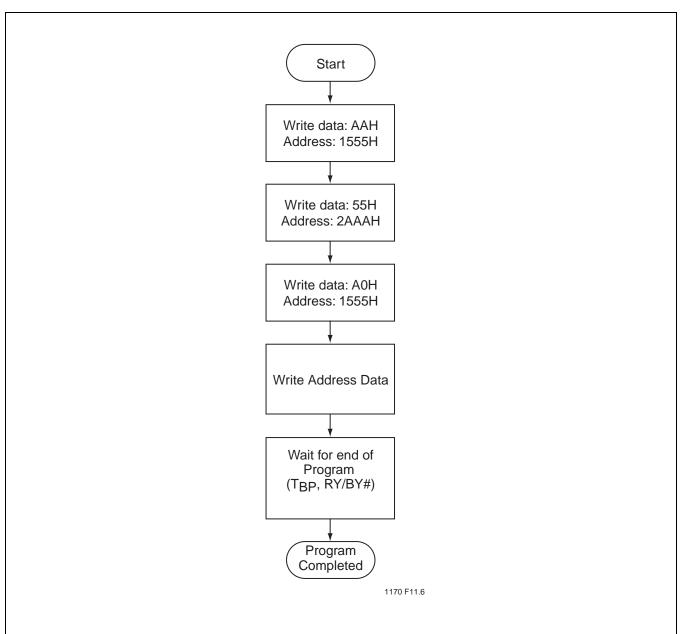


FIGURE 11-9: BYTE-PROGRAM COMMAND SEQUENCE FOR EXTERNAL HOST PROGRAMMING MODE

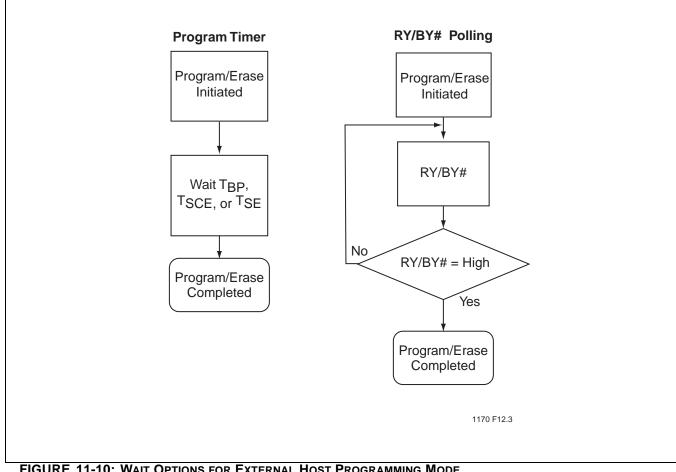
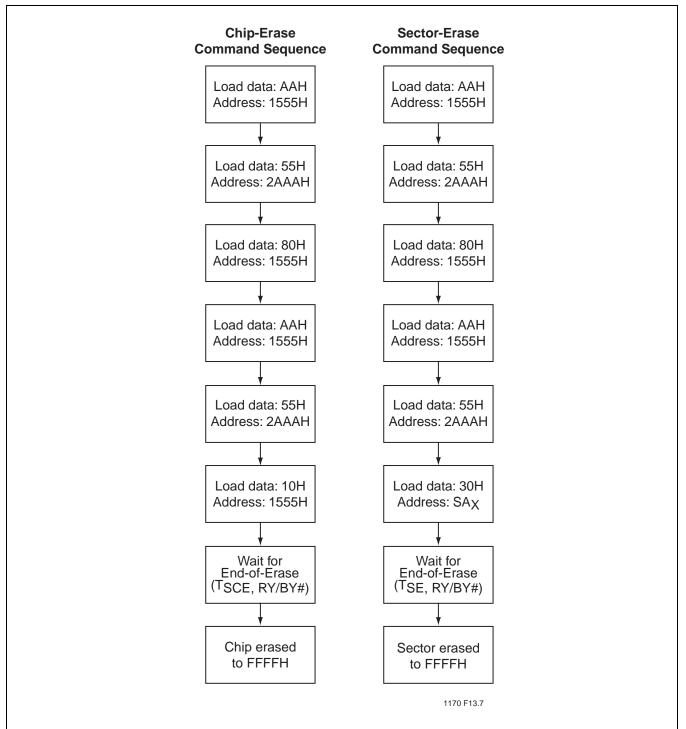
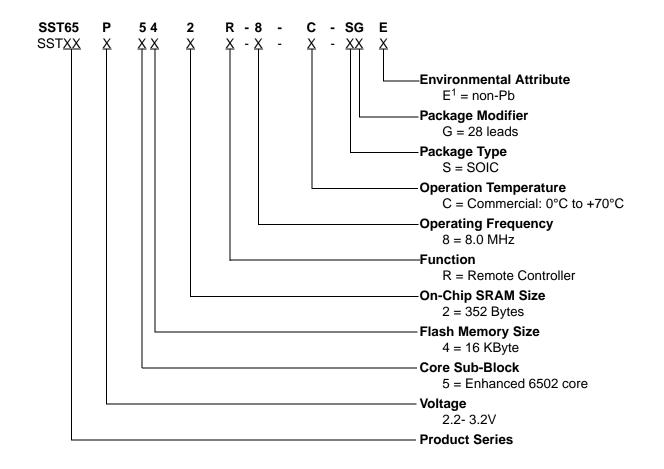



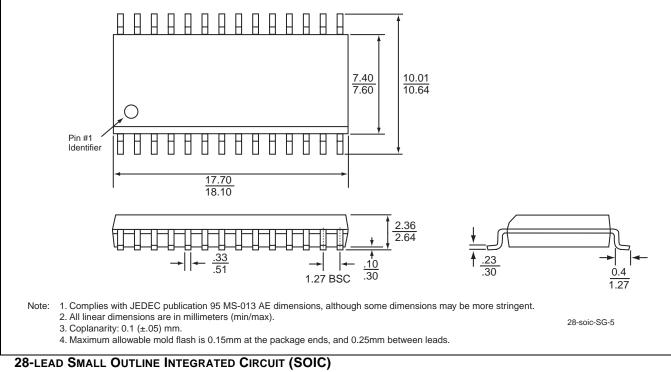
FIGURE 11-10: WAIT OPTIONS FOR EXTERNAL HOST PROGRAMMING MODE



12.0 PRODUCT ORDERING INFORMATION

1. Environmental suffix "E" denotes non-Pb solder. SST non-Pb solder devices are "RoHS Compliant".

12.1 Valid Combinations


Valid combinations for SST65P542R

SST65P542R-8-C-SG SST65P542R-8-C-SGE

Note: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

13.0 PACKAGING DIAGRAMS

SST PACKAGE CODE: SG

Number		Description	Date
01	•	Initial release	Nov 2000
02	٠	Corrected "Memory Map" on page 7	Mar 2001
	•	Clarified Section "Flash Read Protection" on page 23	
03	•	Corrected footnotes in Table 3-1 on page 8	Dec 2001
	•	Corrected I _{DD} values in Table 11-3 on page 30	
	•	Corrected T _{OE} values in Table 11-5 on page 31	
04	•	Change document status to "Data Sheet"	Feb 2002
	•	Corrected I _{OZ} values in Table 11-3 on page 30	
05	•	Clarified Section "Internal Power-on and Brown-out Reset" on page 24	May 2003
	•	Expanded Table 11-2 on page 29	
	•	Added Revision History table	
06	•	Clarified Reset bullet under features on page 1	Jul 2005
	•	Updated footnote in Table 11-2 on page 29	
	•	Added RoHS compliance information on page 1 and in the "Valid combinations for SST65P542R" on page 39	
	•	Updated the surface mount lead temperature from 240°C to 260°C and the time from 3 seconds to 10 seconds on page 29.	

Silicon Storage Technology, Inc. • 1171 Sonora Court • Sunnyvale, CA 94086 • Telephone 408-735-9110 • Fax 408-735-9036 www.SuperFlash.com or www.sst.com