## Electroluminescent Lamp Driver for Low Noise Applications

■ Low Noise Waveform

- Tunable Waveshaping

■ DC to AC Inverter for EL Backlit Display Panels
■ Externally Adjustable Internal Oscillator

- Low Current Standby Mode


## APPLICATIONS

- Cellular Phones
- Cordless Phones
- Handsets
- Backlit LCD Displays



## DESCRIPTION

The SP4425Q is a high voltage output DC-AC converter that can operate from a single 3.0 $\mathrm{V}_{\mathrm{DC}}$ power supply. The SP4425Q is capable of supplying up to $220 \mathrm{~V}_{P P}$ signals, making it ideal for driving electroluminescent lamps. The device features 100 nA (typical) standby current for use in low power portable products. One external inductor is required to generate the high voltage charge and one external capacitor is used to select the oscillator and lamp frequencies. The SP4425Q is offered in an 8 -pin $\mu$ SOIC package. For delivery in die form, please consult the factory.


## SP4425Q Block Diagram

ABSOLUTE MAXIMUM RATINGS
These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Input Voltages/Currents

Lamp Outputs.
Storage Temperature.. $65^{\circ} \mathrm{C}$ to $+150^{\mathrm{PP}} \mathrm{C}$

## SPECIFICATIONS

Power Dissipation Per Package
8 -pin $\mu$ SOIC (derate $4.85 \mathrm{~mW}^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ).
.390 mW

The information furnished herein by Sipex has been carefully reviewed for accuracy and reliability. Its application or use, however, is solely the responsibility of the user. No responsibility for the use of this information is assumed by Sipex, and this information shall not explicitly or implicitly become part of the terms and conditions of any subsequent sales agreement with Sipex. Specifications are subject to change without prior notice. By the sale or transfer of this information, Sipex assumes no responsibility for any infringement of patents or other rights of third parties which may result from its use. No license or other proprietary rights are granted by implication or otherwise under any patent or patent rights of Sipex Corporation.
( $\mathrm{T}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; see test circuit schematic page 6 ; Coil $=2 \mathrm{mH} / 44 \mathrm{ohms} ; \mathrm{C}_{\mathrm{OSC}}=180 \mathrm{pF}, \mathrm{C}_{\mathrm{NTT}}=820 \mathrm{pF}$ unless otherwise noted)

| PARAMETER | MIN. | TYP. | MAX. | UNITS | CONDITIONS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage, $\mathrm{V}_{\mathrm{DD}}$ | 2.2 | 3.0 | 3.3 | $\checkmark$ |  |
| Supply Current, $\mathrm{I}_{\text {CoIL }}+\mathrm{I}_{\text {D }}$ |  | 28 | 40 | mA | $\mathrm{V}_{\text {HON }}=\mathrm{V}_{\text {DD }}=3 \mathrm{~V}$ |
| Coil Voltage, $\mathrm{V}_{\text {coil }}$ | $V_{\text {DD }}$ |  | 3.3 | V |  |
| HON Input Voltage, $\mathrm{V}_{\text {Hом }}$ LOW: EL off HIGH: EL on | $\begin{gathered} -0.25 \\ V_{D D}-0.25 \end{gathered}$ | $\begin{gathered} 0 \\ V_{D D} \end{gathered}$ | $\begin{gathered} 0.25 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}+0.25 \end{gathered}$ | V |  |
| HON Current, EL on |  | 5 | 20 | $\mu \mathrm{A}$ | internal pulldown, $\mathrm{V}_{\text {HоN }}=\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ |
| Shutdown Current, $\mathrm{I}_{\text {SD }}=\mathrm{I}_{\text {COIL }}+\mathrm{I}_{\text {DD }}$ |  | 0.1 | 1.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {Hом }}=0 \mathrm{~V}$ |
| INDUCTOR DRIVE |  |  |  |  |  |
| Coil Frequency, $f_{\text {coil }}=f_{\text {LAMP }} \times 64$ |  | 28.8 |  | kHz |  |
| Coil Duty Cycle |  | 90 |  | \% |  |
| Peak Coil Current, $\mathrm{I}_{\text {PK-coll }}$ |  |  | 90 | mA | Guaranteed by design. |
| EL LAMP OUTPUT |  |  |  |  |  |
| EL Lamp Frequency, $\mathrm{f}_{\text {LAMP }}$ | $\begin{aligned} & 300 \\ & 225 \end{aligned}$ | 450 | $\begin{aligned} & 500 \\ & 775 \end{aligned}$ | Hz | $\begin{aligned} & \mathrm{T}_{\mathrm{AMB}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{AMB}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$ |
| Peak to Peak Output Voltage | $\begin{gathered} 90 \\ 140 \\ 90 \end{gathered}$ | $\begin{aligned} & 120 \\ & 160 \end{aligned}$ |  | $\mathrm{V}_{\text {PP }}$ | $\begin{aligned} & \mathrm{T}_{\mathrm{AMB}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=2.2 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{AMB}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{AMB}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$ |

This data sheet specifies environmental parameters, final test conditions and limits as well suggested operating conditions. For applications which require performance beyond the specified condition and or limits please consult the factory.

## Bonding Diagram:



| PAD | X | Y |
| :--- | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}$ | 261.0 | 427.0 |
| EL 1 | 813.0 | 429.0 |
| $\mathrm{EL2}$ | 813.0 | 28.0 |
| D 1 | 813.0 | -172.0 |
| $\mathrm{COIL}^{2}$ | 767.0 | -381.0 |
| $\mathrm{~V}_{\mathrm{SS}}$ | 143.5 | -412.0 |
| $\mathrm{C}_{\mathrm{OSC}}$ | -790.0 | -157.5 |
| HON | -785.5 | 402.0 |

NOTES:

1. Dimensions are in Microns unless otherwise noted.
2. Bonding pads are $125 \times 125$ typ.
3. Outside dimensions are maximum, including scribe area.
4. Die thickness is $380+/-25$ microns ( 15 mils $+/-1$ ).
5. Pad center coordinates are relative to die center.
6. Die size $74 \times 44$ mils.

## PIN DESCRIPTION



Pin $1-\mathrm{C}_{\text {osc }}{ }^{-}$Capacitor input 1, connect Capacitor from $\mathrm{V}_{\mathrm{SS}}$ to Pin 1 to set $\mathrm{C}_{\mathrm{osC}}$ frequency.
Pin $2-\mathrm{V}_{\mathrm{SS}}$ - Power supply common, connect to ground.
Pin 3 - Coil- Coil input, connect coil from $V_{D D}$ to pin 3 .
Pin 4 - D1- Diode Cathode connection.
$-\mathrm{C}_{\mathrm{INT}}$ - Integrator capacitor, connect capacitor from pin 4 to ground to minimize coil glitch energy.
Pin 5 - Lamp- Lamp driver output2, connect to EL lamp.

Pin 6 - Lamp- Lamp driver output1, connect to EL lamp.

Pin $7-\mathrm{V}_{\mathrm{DD}}$ - Power supply for driver, connect to system $V_{D D}$.
Pin 8 - HON- Enable for driver operation, high $=$ active; low $=$ inactive.

## THEORY OF OPERATION

The $\mathbf{S P 4 4 2 5 Q}$ is made up of three basic circuit elements, an oscillator, coil, and switched H-bridge network. The oscillator provides the device with an on-chip clock source used to control the charge and discharge phases for the coil and lamp. An external capacitor connected between pins 1 and Vss allows the user to vary the oscillator frequency. For a given choice of coil inductance there will be an optimum $\mathrm{C}_{\text {osc }}$ capacitor value that provides maximum light output.

The suggested oscillator frequency is 28.8 kHz $\left(\mathrm{C}_{\mathrm{OSC}}=180 \mathrm{pF}\right)$. The oscillator output is internally divided to create the control signal for $\mathrm{f}_{\text {LAMP }}$. The oscillator output is internally divided down by 6 flip flops. A 28.8 kHz signal will be divided into 6 frequency levels: $14.4 \mathrm{kHz}, 7.2 \mathrm{kHz}, 3.6 \mathrm{kHz}$, $1.8 \mathrm{kHz}, 900 \mathrm{kHz}$, and 450 Hz . The oscillator output ( 28.8 kHz ) is used to drive the coil (see figure 2 on page 6) and the sixth flip flop output ( 300 Hz ) is used to drive the lamp. Although the oscillator frequency can be varied to optimize the lamp output, the ratio of $\mathrm{f}_{\text {COIL }} / \mathrm{f}_{\text {LAMP }}$ will always equal 64 .

The coil is an external component connected from $\mathrm{V}_{\text {BATTERY }}$ to pin 3 of the $\mathbf{S P 4 4 2 5 Q}$. $\mathrm{V}_{\text {battery }}=3.0$ VDC with a $2 \mathrm{mH} / 44 \Omega$ coil are typical conditions. Energy is stored in the coil according to the equation


## SP4425Q Schematic

$\mathrm{E}_{\mathrm{L}}=1 / 2 \mathrm{LI}^{2}$, where I is the peak current flowing in the inductor. The current in the inductor is time dependent and is set by the "ON" time of the coil switch: $\mathrm{I}=\left(\mathrm{V}_{\mathrm{L}} / \mathrm{L}\right) \mathrm{t}_{\mathrm{ON}}$, where $\mathrm{V}_{\mathrm{L}}$ is the voltage across the inductor. At the moment the switch closes, the current in the inductor is zero and the entire supply voltage (minus the $\mathrm{V}_{\mathrm{SAT}}$ of the switch) is across the inductor. The current in the inductor will then ramp up at a linear rate. As the current in the inductor builds up, the voltage across the inductor will decrease due to the resistance of the coil and the "ON" resistance of the switch: $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\text {BATTERY }}$ -$\mathrm{IR}_{\mathrm{L}}$-Vsat. Since the voltage across the inductor is decreasing, the current ramp rate also decreases which reduces the current in the coil at the end of $t_{\text {ON }}$, the energy stored in the inductor per coil cycle and therefore, the light output. The other important issue is that maximum current (saturation current) in the coil is set by the design and manufacturer of the coil. If the parameters of the application such as $V_{\text {BATTERY }}, L, R_{L}$ or ${ }_{\text {on }}$ cause the current in the coil to increase beyond its rated $\mathrm{I}_{\mathrm{SAT}}$, excessive heat will be generated and the power efficiency will decrease with no additional light output.

The majority of the current goes through the coil and typically less than 2 mA is required for $\mathrm{V}_{\mathrm{DD}}$ of the $\mathbf{S P 4 4 2 5 Q}$. $\mathrm{V}_{\mathrm{DD}}$ can range from 2.2 V to 3.3 V ; it is not necessary that $V_{D D}=V_{\text {BATTERY. }}$. Coils are also a function of the core material and winding used. Performance variances may be noticeable from different coil suppliers. The Sipex SP4425Q is final tested at 3.0 V using a $2 \mathrm{mH} / 44 \Omega$ coil from Matsushita. For suggested coil sources see page 10.

The $\mathrm{f}_{\text {coll }}$ signal controls a switch that connects the end of the coil at pin 3 to ground or to open circuit. The $\mathrm{f}_{\text {coll }}$ signal is a $90 \%$ duty cycle signal switching at the oscillator frequency. During the time when the $f_{\text {coll }}$ signal is high, the coil is connected from $\mathrm{V}_{\text {BATTERY }}$ to ground and a charged magnetic field is created in the coil. During the low part of $\mathrm{f}_{\text {coll }}$, the ground connection is switched open, the field collapses and the energy in the inductor is forced to flow toward the lamp. $\mathrm{f}_{\text {coll }}$ will send 32 of these charge pulses (see figure 2 on page 6) lamp, each pulse increases the voltage drop across the lamp in discrete steps. As the voltage potential approaches its maximum, the steps become smaller (see figure 1 on page 6).

The H-bridge consists of two SCR structures that act as high voltage switches. These two switches control the polarity of how the lamp is charged. The SCR switches are controlled by the $f_{\text {LAMP }}$ signal which is the oscillator frequency divided by 64 . For a 28.8 kHz oscillator, $\mathrm{f}_{\text {LAMP }}=450 \mathrm{~Hz}$.

When the energy from the coil is released, a high voltage spike is created triggering the SCR switches. The direction of current flow is determined by which SCR is enabled. One full cycle of the H -bridge will create a voltage step from ground to 80 V (typical) on pins 5 and 6 which are 180 degrees out of phase with each other (see figure 3 on page 6). A differential view of the outputs is shown in figure 4 on page 6.

## Layout Considerations

The SP4425Q circuit board layout must observe careful analog precautions. For applications with noisy power supply voltages, a $0.1 \mu \mathrm{~F}$ low ESR decoupling capacitor must be connected from $V_{D D}$ to ground. Any high voltage traces should be isolated from any digital clock traces or enable lines. A solid ground plane connection is strongly recommended. All traces to the coil or to the high voltage outputs should be kept as short as possible to minimize capacitive coupling to digital clock lines and to reduce EMI emissions.

## Integrator Capacitor

An integrating capacitor must be placed from pin 4 (D1) to ground in order to minimize glitches associated with switching the coil. A capacitor at this point will collect the high voltage spikes and will maximize the peak to peak voltage output. High resistance EL lamps will produce more pronounced spiking on the EL output waveform; adding the $\mathrm{C}_{\mathrm{INT}}$ capacitor will minimize the peaking and increase the voltage output at each coil step. The value of the integrator capacitor is application specific. Typical values can range from 500 pF to $0.1 \mu \mathrm{~F}$. No integrator capacitor or very small values $(500 \mathrm{pF})$ will have a minor effect on the output, whereas a $0.1 \mu \mathrm{~F}$ capacitor will cause the output to charge more rapidly creating a square wave output. For most 3 V applications an 820 pF integrator capacitor is suitable.

## Waveshaping

The SP4425Q allows the user to "tune" the output waveform for specific application requirements. External resistors, QR1 and QR2 (see SP4425QCU schematic page 3) can be adjusted to remove any sharp, high frequency edges present on the EL output waveform. Typical values range from $5 \mathrm{k} \Omega$ to $20 \mathrm{k} \Omega$. The waveforms on page 9 show the effect that the Q resistors have on the output. As the sharp discharge edge is filtered, the available noise from the vibration of the lamp is reduced. The user must balance the noise performance with the light output performance to achieve the desired results.

## Electroluminescent Technology

## What is electroluminescence?

An EL lamp is basically a strip of plastic that is coated with a phosphorous material which emits light (fluoresces) when a high voltage ( $>40 \mathrm{~V}$ ) which was first applied across it, is removed or reversed. Long periods of DC voltages applied to the material tend to breakdown the material and reduce its lifetime. With these considerations in mind, the ideal signal to drive an EL lamp is a high voltage sine wave. Traditional approaches to achieving this type of waveform included discrete circuits incorporating a transformer, transistors, and several resistors and capacitors. This approach is large and bulky, and cannot be implemented in most hand held equipment. Sipex now offers low power single chip driver circuits specifically designed to drive small to medium sized electroluminescent panels.

Electroluminescent backlighting is ideal when used with LCD displays, keypads, or other backlit readouts. Its main use is to illuminate displays in dim to dark conditions for momentary periods of time. EL lamps typically consume less power than LEDs or bulbs making them ideal for battery powered products. Also, EL lamps are able to evenly light an area without creating "hot spots" in the display.

The amount of light emitted is a function of the voltage applied to the lamp, the frequency at which it is applied, the lamp material used and its size, and lastly, the inductor used. Both voltage and frequency are directly related to light output. In other words, as the voltage or the frequency of the EL output is increased, the light output will also increase. The voltage has a much larger impact on light output than the frequency does. For example, an output signal of $168 \mathrm{~V}_{\mathrm{PP}}$ with a frequency of 500 Hz can yield $15 \mathrm{Cd} / \mathrm{m}^{2}$. In the same application a different EL driver could produce $170 \mathrm{~V}_{\mathrm{PP}}$ with a frequency of 450 Hz and can also yield $15 \mathrm{Cd} / \mathrm{m}^{2}$. Variations in peak-to- peak voltage and variations in lamp frequency are to be expected, light output will also vary from device-to-device however typical light output variations are usually not visually noticeable.

There are many variables which can be optimized for specific applications. Sipex supplies characterization charts to aid the designer in selecting the optimum circuit configuration (see page 7 and 8).


EL1 output; 32 charge steps per half cycle
Figure 1. EL1 Output without QR1 and QR2


32 coil pulses per half cycle; $94 \%$ duty cycle.

Figure 2. Voltage pulses released from the coil to the EL driver circuitry


Figure 3. EL1, EL2 Output without QR1 and QR2


Figure 4. Differential Representation of (EL1-EL2) without QR1 and QR2


Figure 5. Typical SP4425Q Application Circuit


Figure 6. SP4425Q 3V Test Circuit

The following performance curves are intended to give the designer a relative scale from which to optimize specific applications. Absolute measurements may vary depending upon the brand of components chosen.


Figure 7. Coil= $2 \mathrm{mH} / 44 \Omega ; \mathrm{C}_{\mathrm{osc}}=180 \mathrm{pF}$; $\mathrm{C}_{\mathrm{INT}}=470 \mathrm{pF} ; \mathrm{C}_{\mathrm{LOAD}}=4 \mathrm{nF}$

Total $\mathrm{I}_{\mathrm{CC}} @ 3 \mathrm{~V}_{\mathrm{DD}}$ vs. Temperature


Figure 9. Coil $=2 \mathrm{mH} / 44 \Omega$; $\mathrm{C}_{\mathrm{osc}}=180 \mathrm{pF}$; $\mathrm{C}_{\mathrm{INT}}=470 \mathrm{pF} ; \mathrm{C}_{\mathrm{LOAD}}=4 \mathrm{nF}$


Figure 8. Coil $=2 \mathrm{mH} / 44 \Omega ; \mathrm{C}_{\mathrm{osc}}=180 \mathrm{pF}$; $\mathrm{C}_{\mathrm{INT}}=470 \mathrm{pF} ; \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$; Load=3 sq.in.

SP4425 Peak-to-Peak Voltage vs. Temperature


Figure 10. Coil $=2 \mathrm{mH} / 44 \Omega ; \mathrm{C}_{\mathrm{OSC}}=180 \mathrm{pF}$; $\mathrm{C}_{\text {INT }}=470 \mathrm{pF} ; \mathrm{C}_{\text {LOAD }}=4 \mathrm{nF}$

The following scope photos show the affect the tuning resistors (QR1 and QR2) have on the output waveform. Figure 11 implements only $5 \mathrm{~K} \Omega$ of series resistance introducing only a slight amount of filtering of the discharge edge. Figure 12 shows that if the values are increased to $10 \mathrm{~K} \Omega$ the discharge edge is reduced even further. A $20 \mathrm{~K} \Omega$ example is shown in Figure 14 and represents the most amount of filtering needed. Again, the balance in light output and audible noise must be observed for each application.



Figure 11. QR1 $=$ QR2 $=5 \mathrm{~K} \Omega$ $V_{\text {PP }}=196 \mathrm{~V}_{\text {PK-PK }}, \mathrm{F}_{\text {LAMP }}=269 \mathrm{~Hz}$ Low noise suppression level


Figure 13.
QR1=QR2 $=15 \mathrm{~K} \Omega$
$\mathrm{V}_{\text {PP }}=177 \mathrm{~V}_{\text {PK.PK }}, \mathrm{F}_{\mathrm{LAMP}}=269 \mathrm{~Hz}$
High noise suppression level


Figure 12.
QR1=QR2=10K $\Omega$
$\mathrm{V}_{\text {PP }}=187 \mathrm{~V}_{\mathrm{PK}-\mathrm{PK}}, \mathrm{F}_{\mathrm{LAMP}}=268 \mathrm{~Hz}$
Low noise suppression level


Figure 14.
QR1=QR2 $=20 \mathrm{~K} \Omega$
$V_{\text {PP }}=168 \mathrm{~V}_{\text {PK.-PK }}, \mathrm{F}_{\mathrm{LAMP}}=266 \mathrm{~Hz}$
High noise suppression level

The coil part numbers presented in this data sheet have been qualified as being suitable for the SP4425 product. Contact Sipex for applications assistance in choosing coil values not listed in this data sheet.

Coil Manufacturers
New Coils

| Coilcraft USA <br> Ph: (847) 639-6400 <br> Fax: (847) 639-1469 <br> Coilcraft Europe <br> Ph: 4401236730595 <br> Fax: 4401236730627 | Coilcraft Taiwan <br> Ph: 886/2/264-3646 <br> Fax: 886/2/270-0294 <br> Coil Craft Singapore <br> Ph: 65 296-6933 <br> Fax: 465 296-4463 \#382 | Coilcraft Hong Kong <br> Ph: 852 770-9428 <br> Fax: 852 770-0729 <br> Part No. DO1608C-474 $470 \mu \mathrm{H}, 3.60$ ohm |  |  |
| :---: | :---: | :---: | :---: | :---: |
| muRata USA <br> Ph: (770) 436-1300 <br> Fax: (770) 436-3030 <br> muRata Europe <br> Ph: 011-4991166870 <br> Fax: 011-49116687225 | muRata Taiwan Electronics <br> Ph: 01188642914151 <br> Fax: 01188644252929 <br> muRata Electronics <br> Singapore <br> Ph: 011657584233 <br> Fax: 011657536181 | muRata Hong Kong <br> Ph: 011-85223763898 <br> Fax: 011852237555655 <br> Part No. LQN4N471K04 $470 \mu \mathrm{H}$, 11.5 ohm | (All Dimensions in mm) |  |

KOA Speer Electronics, Inc.
Ph: 814-362-5536
Fax: 814-362-8883
Part No. LPC4045TE471K
$470 \mu \mathrm{H}, 4.55 \mathrm{ohm}$

(All Dimensions in mm)


Toko America Inc. USA
Ph: (847) 297-0070
Fax: (847) 699-7864
Toko Inc. Europe
Ph: (0211) 680090
Fax: (0211) 679-9567

Toko Inc. Japan Ph: 0337271161 Fax: 0337271176

Toko Inc. Singapore
Ph: (255) 4000
Fax: (250) 8134

Toko Inc. Hong Kong
Ph: 2342-8131
Fax: 2341-9570

Part No. 875FU-122M
$1.2 \mathrm{mH}, 19 \mathrm{ohm}$


## EL polarizers/transflector manufacturers

Nitto Denko
San Jose, CA
Phone: (510) 445-5400
Astra Products
Baldwin, NJ
Phone: (516) 223-7500
Fax: (516) 868-2371

(All Dimensions in mm)

## EL Lamp manufacturers

Metro Mark/Leading Edge Minnetonka, MN
Phone: (800) 680-5556
Phone: (612) 912-1700
Midori Mark Ltd.
1-5 Komagata 2-Chome
Taita-Ku 111-0043 Japan
Phone: 81-03-3848-2011
Luminescent Systems Inc. (LSI) Lebanon, NH
Phone: (603) 448-3444
Fax: (603) 448-3452

NEC Corporation
Tokyo, Japan
Phone: (03) 3798-9572
Fax: (03) 3798-6134
Seiko Precision
Chiba, Japan
Phone: (03) 5610-7089
Fax: (03) 5610-7177
Gunze Electronics 2113 Wells Branch Parkway
Austin, TX 78728
Phone: (512) 752-1299
Fax: (512) 252-1181

All package dimensions in inches

$$
\text { 8-pin } \mu \text { SOIC }
$$



50 SP4425QCU per tube

$\mu$ SOIC-8 13" reels: $\mathrm{P}=8 \mathrm{~mm}, \mathrm{~W}=12 \mathrm{~mm}$

| $\mu$ SOIC-8 13" reels: $\mathbf{P = 8 m m}, \mathbf{W}=\mathbf{1 2 m m}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Pkg. | Minimum qty per reel | Standard qty per reel | Maximum qty per reel |
| CU | 500 | 2500 | 3000 |

## ORDERING INFORMATION

| Model | Operating Temperature Ranger............................. 8-Pin $\mu$ SOIC |
| :--- | ---: | ---: |
| SP4425QCU . ........................................................................................ $\mu$ SOIC $+85^{\circ} \mathrm{C}$ |  |
| SPaluation Board |  |

Please consult the factory for pricing and availability on a Tape-On-Reel option.

## SIGNALPROCESSING EXCEயENCE

| Sipex Corporation | European Sales Offices: | Far East: |
| :--- | :--- | :--- |
|  |  |  |
| Headquarters and | ENGLAND: | JAPAN: |
| Sales Office | Sipex Corporation | Nippon Sipex Corporation |
| 22 Linnell Circle | 2 Linden House | Yahagi No. 2 Building |
| Billerica, MA 01821 | Turk Street | 3-5-3 Uchikanda, Chiyoda-ku |
| TEL: (978) 667-8700 | Alton Hampshire GU34 IAN | Tokyo 101 |
| FAX: (978) 670-9001 | England | TEL: 81.3.3256.0577 |
| e-mail: sales@sipex.com | TEL: 44-1420-549527 | FAX: 81.3.3256.0621 |
|  | FAX:44-1420-542700 |  |
| Sales Office | e-mail: mikeb@sipex.co.uk |  |
| 233 South Hillview Drive |  |  |
| Milpitas, CA 95035 |  |  |
| TEL: (978) 934-7500 | GERMANY: |  |
| FAX: (978) 935-7600 | Sipex GmbH |  |
|  | Gautinger Strasse 10 |  |
|  | 82319 Starnberg |  |
|  | TEL: 49.81.51.89810 |  |

