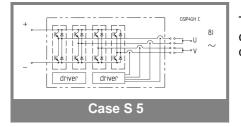

SKiiP 642GH120-4D

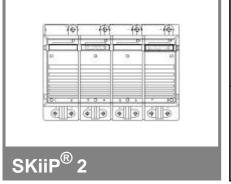
4-pack - integrated intelligent Power System

Power section


SKiiP 642GH120-4D

Features

- · SKiiP technology inside
- CAL diode technology
- Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- 1) with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute Maximum Ratings		s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	600 (450)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	600 (450)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	4320	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	93	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics $T_s = 3$						= 25 °C unless otherwise specified			
Symbol Conditions				s min.	typ.	max.	Units		
IGBT	Condition	7113			111111.	typ.	max.	Units	
V _{CEsat}	I _C = 500 A,	T. = 25 (1	25) °C		i	2,6 (3,1)	3,1	l v	
V _{CEO}	$T_i = 25 (12)$		20) 0			,	1,5 (1,6)	V	
r _{CE}	$T_i = 25 (12)$					2,6 (3,5)		mΩ	
I _{CES}	$V_{GE} = 0 V$					(30)	0,8	mA	
CES	$T_i = 25 (12)$		=8'			(00)	0,0		
E _{on} + E _{off}	I _C = 500 A,		0 V				150	mJ	
0	T _j = 125 °C	C, V _{CC} = 90	00 V				265	mJ	
R _{CC' + EE'}	terminal chip, T _i = 125 °C					0,25		mΩ	
L _{CE}	top, bottom	ı ์				7,5		nΗ	
C _{CHC}	per phase,	AC-side				2,8		nF	
Inverse o	diode								
$V_F = V_{EC}$	$I_F = 500 A,$	$T_i = 25 (1$	25) °C			2,1 (2)	2,6	V	
V_{TO}	$T_i = 25 (12)$					1,3 (1)	1,4 (1,1)	V	
r _T	$T_{j} = 25 (12)$					1,7 (2)	2,3 (2,6)	mΩ	
E _{rr}	$I_{\rm C} = 500 \text{A},$	$V_{CC} = 60$	0 V				19	mJ	
	$T_j = 125 °C$	$V_{CC} = 90$	00 V				25	mJ	
Mechani	cal data								
M _{dc}	DC terminals, SI Units				6		8	Nm	
M _{ac}	AC termina				13		15	Nm	
w	SKiiP® 2 System w/o heat sink					3,5		kg	
w	heat sink					8,5		kg	
Thermal	characte	ristics (P16 hea	t sink; 2	75 m ³ /h);	" , " refe	rence to		
temperat	ure sens	or				•			
$R_{th(j-s)I}$	per IGBT						0,045	K/W	
$R_{th(j-s)D}$	per diode						0,125	K/W	
$R_{th(s-a)}$	per module	9					0,033	K/W	
Z_{th}	R _i (mK/W) (max. values)				tau _i (s)				
	1	2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	5	35	5	0	1	0,13	0,001	1	
$Z_{th(j-r)D}$	14	96	15	0	1	0,13	0,001	1	
$Z_{\text{th(r-a)}}$	1,6	22	7	2,4	494	165	20	0,03	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

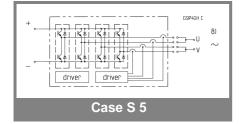
SKiiP 642GH120-4D

Absolute Maximum Ratings		_a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	20	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

4-pack - integrated intelligent Power System

4-pack integrated gate driver

SKiiP 642GH120-4D


Gate driver features

- Two separate and independent "GB"-type driver
- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- U-option is integrated on left driver, (DC terminals at bottom; refer to case drawing)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option)
- IEC 60068-1 (climate) 25/85/56

Characteristics				(T _a	(T _a = 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units	
V _{S1}	supply voltage stabilized	14,4	15	15,6	V	
V_{S2}	supply voltage non stabilized	20	24	30	V	
I _{S1}	V _{S1} = 15 V	210+430	210+430*f/f _{max} +1,2*(I _{AC} /A)			
I _{S2}	V _{S2} = 24 V	160+290	160+290*f/f _{max} +0,85*(I _{AC} /A)			
V _{iT+}	input threshold voltage (High)			12,3	V	
V_{iT-}	input threshold voltage (Low)	4,6			V	
R _{IN}	input resistance		10			
t _{d(on)IO}	input-output turn-on propagation time			1,5	μs	
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs	
$t_{pERRRESET}$	error memory reset time	9			μs	
t_{TD}	top / bottom switch : interlock time		3,3		μs	
l analogOUT	8 V corresponds to max. current of 15 V supply voltage		600		Α	
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA	
I _{A0max}	output current at pin 12/14			5	mA	
V _{0I}	logic low output voltage			0,6	V	
V _{0H}	logic high output voltage			30	V	
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		750		Α	
I _{TRIPLG}	ground fault protection				Α	
T _{tp}	over temperature protection	110		120	°C	
U _{DCTRIP}	trip level of U _{DC} -protection	900			V	
	(U _{analog OUT} = 9 V); (option)					

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

