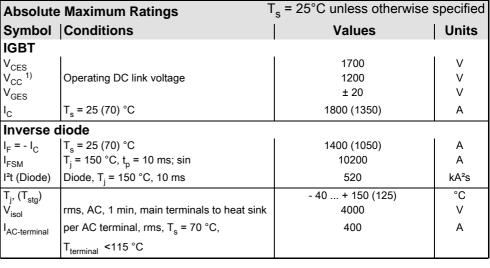
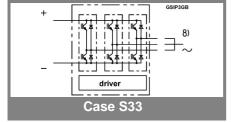

SKiiP 1803GB172-3DW

SKiiP[®] 3

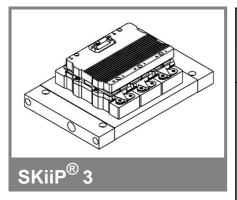

2-pack-integrated intelligent Power System

Power section SKiiP 1803GB172-3DW


Preliminary Data

Features

- SKiiP technology inside
- Trench IGBTs
- · CAL diode technology
- Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- AC connection busbars must be connected by the user; copper busbars available on request



Characte	Characteristics				$T_s = 25$ °C unless otherwise specified				
Symbol Conditions				min.	typ.	max.	Units		
IGBT	•				ı			'	
V _{CEsat}	I _C = 900 / measured at	A, T _j = 25 (1 t terminal	125) °C;			1,9 (2,2)	2,4	V	
V_{CEO}	$T_i = 25 (1$	25) °C; at t	erminal			1 (0,9)	1,2 (1,1)	V	
r _{CE}		25) °C; at to				1 (1,4)	1,3 (1,7)	mΩ	
I _{CES}	$V_{GE} = 0 V_{T_i} = 25 (1)$	/, V _{CE} = V _C 25) °C	ES [,]			3,6 (216)		mA	
E _{on} + E _{off}	$I_{\rm C}^{\rm J}$ = 900 A, $V_{\rm CC}$ = 900 V				mJ				
	T _j = 125 °	T _i = 125 °C, V _{CC} = 1200 V				863			
R _{CC+EE}	terminal o	chip, T _i = 25	5 °C			mΩ			
L _{CE}	top, botto					4		nΗ	
C _{CHC}	per phase	e, AC-side				3		nF	
Inverse o	diode								
$V_F = V_{EC}$	I _F = 900 A measured at	A, T _j = 25 (1 t terminal	125) °C			2 (1,8)	2,15	V	
V_{TO}	T _i = 25 (1	25) °C				1,1 (0,8)	1,2 (0,9)	V	
r _T	$T_i = 25 (1$	25) °C				1 (1,1)	1,1 (1,2)	mΩ	
E _{rr}	$I_{\rm C} = 900 A$	A, V _{CC} = 90	0 V			108		mJ	
	T _j = 125 °	°C, V _{CC} = 1	200 V			128		mJ	
	Mechanical data								
M_{dc}	DC termin	nals, SI Uni	ts		6		8	Nm	
${\rm M}_{\rm ac}$		nals, SI Uni			13	2,4	15	Nm	
W	SKiiP® 3 System w/o heat sink					kg			
W	heat sink					5,2		kg	
						c); "s" ref (acc.IEC			
$R_{th(j-s)l}$	per IGBT						0,017	K/W	
R _{th(j-s)D}	per diode	:					0,033	K/W	
Z _{th}	R _i (mK/W) (max. values)								
	1	2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	1,4	6,8	7,8	0	69	0,35	0,02	1	
$Z_{th(j-r)D}$	2,6	4	17,7	17,7	50	5	0,25	0,04	
$Z_{th(r-a)}$	4,6	4,7	1,1	0,6	48	15	2,8	0,4	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 1803GB172-3DW

2-pack-integrated intelligent Power System

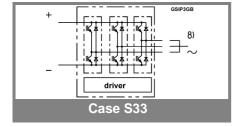
2-pack integrated gate driver SKiiP 1803GB172-3DW

Preliminary Data

Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	Maximum Ratings	a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2s)	4000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1500	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	9	kHz	
f _{out}	output frequency for I=I _C ; sin.	1	kHz	
T _{op} (T _{stg})	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	$(T_a = 25^{\circ}C)$			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	380+34*f/kHz+0,00015*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C_{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
$t_{d(off)IO}$	input-output turn-off propagation time		1,3		μs
$t_{pERRRESET}$	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		1500		А
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	$(I_{analog} OUT = 10 V)$		1875		Α
T_tp	over temperature protection	110		120	°C
UDCTRIP	U_{DC} -protection ($U_{analog OUT} = 9 V$);	i	not mplemente	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

