


SEMITOP<sup>®</sup> 2

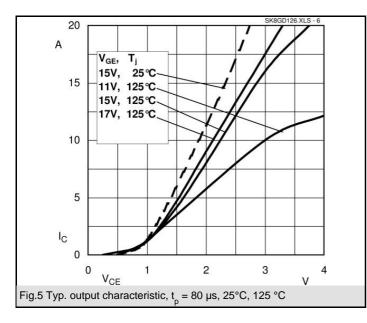
### **IGBT** Module

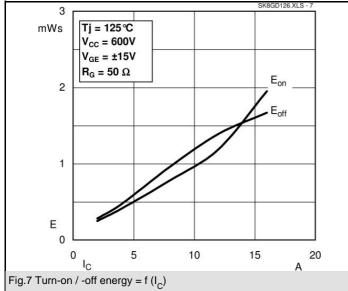
#### SK 8 GD 126

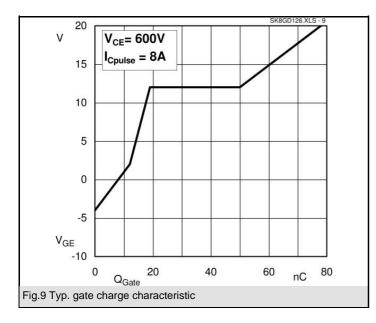
Target Data

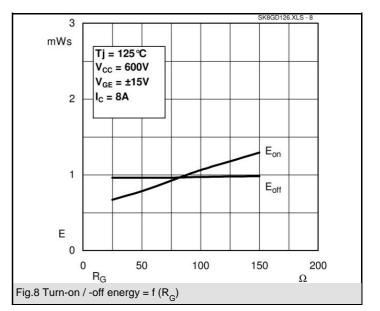
#### **Features**

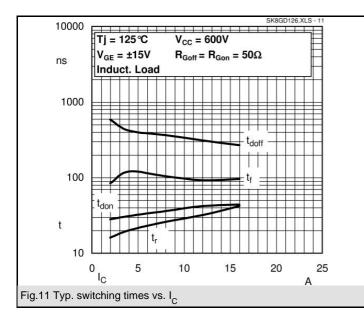
- Fast Trench IGBTs
- Soft freewheeling diodes in
- CAL High Density technology · Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)

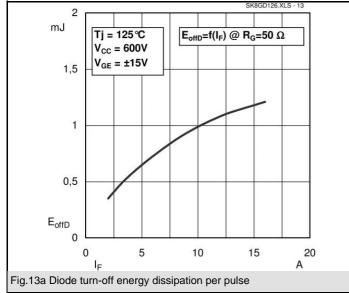

#### **Typical Applications**

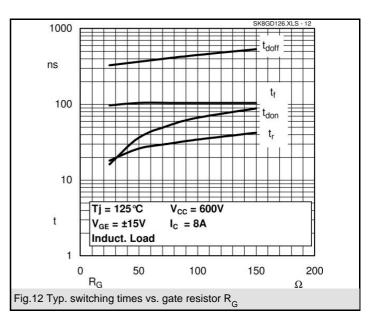

- Switching (not for linear use)
- Inverter .
- Switched mode power supplies
- UPS

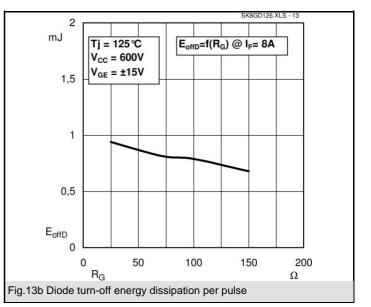

| Absolute Maximum Ratings $T_s = 25 \text{ °C}$ , unless otherwise specified |                                                     |                        |                                                    |      |       |  |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------|------------------------|----------------------------------------------------|------|-------|--|--|
| Symbol                                                                      | Conditions                                          |                        | Values                                             |      |       |  |  |
| IGBT                                                                        |                                                     |                        |                                                    |      |       |  |  |
| V <sub>CES</sub>                                                            |                                                     |                        | 1200                                               |      | V     |  |  |
| V <sub>GES</sub>                                                            |                                                     |                        | ± 20                                               |      | V     |  |  |
| I <sub>C</sub>                                                              | T <sub>s</sub> = 25 (80) °C;                        |                        | 15 (10)                                            |      |       |  |  |
| I <sub>CM</sub>                                                             | t <sub>p</sub> < 1 ms; T <sub>s</sub> = 25 (80) °C; |                        | 30 (20)                                            |      |       |  |  |
| T <sub>j</sub>                                                              |                                                     |                        | - 40 + 150                                         |      | °C    |  |  |
| Inverse/F                                                                   | reewheeling CAL diode                               |                        |                                                    |      |       |  |  |
| I <sub>F</sub>                                                              | T <sub>s</sub> = 25 (80) °C;                        |                        | 13 (9)                                             |      |       |  |  |
| $I_{FM} = -I_{CM}$                                                          | t <sub>p</sub> < 1 ms; T <sub>s</sub> = 25 (80) °C; |                        | 26 (18)                                            |      |       |  |  |
| T <sub>j</sub>                                                              |                                                     |                        | - 40 + 150                                         |      | °C    |  |  |
| T <sub>stg</sub>                                                            |                                                     |                        | - 40 + 125                                         |      | °C    |  |  |
| T <sub>sol</sub>                                                            | Terminals, 10 s                                     |                        | 260                                                |      |       |  |  |
| V <sub>isol</sub>                                                           | AC 50 Hz, r.m.s. 1 min. / 1 s                       |                        | 2500 / 3000 V                                      |      |       |  |  |
|                                                                             | ·                                                   |                        |                                                    |      |       |  |  |
| Characte                                                                    | ristics                                             | T <sub>s</sub> = 25 °C | $T_s = 25 \text{ °C}$ , unless otherwise specified |      |       |  |  |
| Symbol                                                                      | Conditions                                          | min.                   | typ.                                               | max. | Units |  |  |
| IGBT                                                                        |                                                     |                        |                                                    |      |       |  |  |
| V <sub>CE(sat)</sub>                                                        | I <sub>C</sub> = 8 A, T <sub>i</sub> = 25 (125) °C  |                        | 1,7 (2)                                            | 2,1  | V     |  |  |
| V <sub>GE(th)</sub>                                                         | $V_{CE} = V_{GE}$ ; I <sub>C</sub> = 0,0003 A       | 5                      | 5,8                                                | 6,5  | V     |  |  |
| Cies                                                                        | $V_{CE} = 25 V; V_{GE} = 0 V; 1 MHz$                |                        | 0,7                                                |      | nF    |  |  |
| R <sub>th(j-s)</sub>                                                        | per IGBT                                            |                        |                                                    | 2    | K/W   |  |  |
| /                                                                           |                                                     |                        |                                                    |      |       |  |  |


| Cies                 | $v_{CE} = 23 v, v_{GE} = 0 v, 1 W \square Z$           | 0,7       |         | nF  |
|----------------------|--------------------------------------------------------|-----------|---------|-----|
| R <sub>th(j-s)</sub> | per IGBT                                               |           | 2       | K/W |
| <b>G</b> ,           | per module                                             |           |         | K/W |
|                      | under following conditions:                            |           |         |     |
| t <sub>d(on)</sub>   | $V_{CC} = 600 \text{ V}$ , $V_{GE} = \pm 15 \text{ V}$ | 85        |         | ns  |
| t,                   | I <sub>C</sub> = 8 A, T <sub>i</sub> = 125 °C          | 30        |         | ns  |
| t <sub>d(off)</sub>  | $R_{Gon} = R_{Goff} = 50 \Omega$                       | 430       |         | ns  |
| t <sub>f</sub>       |                                                        | 90        |         | ns  |
| $E_{on} + E_{off}$   | Inductive load                                         | 1,9       |         | mJ  |
| Inverse/             | Freewheeling CAL diode                                 |           |         |     |
| $V_F = V_{EC}$       | I <sub>F</sub> = 8 A; T <sub>i</sub> = 25 (125) °C     | 1,9 (2)   | 2 (2,4) | V   |
| V <sub>(TO)</sub>    | $T_{i} = (125)^{\circ}C$                               | 1 (0,8)   | 1,1     | V   |
| r <sub>T</sub>       | T <sub>j</sub> = (125) °C                              | 112 (150) | 138     | mΩ  |
| R <sub>th(j-s)</sub> |                                                        |           | 2,8     | K/W |
|                      | under following conditions:                            |           |         |     |
| I <sub>RRM</sub>     | I <sub>F</sub> = 8 A; V <sub>R</sub> = 600 V           | 9,4       |         | А   |
| Q <sub>rr</sub>      | dI <sub>F</sub> /dt = 300 A/µs                         | 1,5       |         | μC  |
| E <sub>off</sub>     | V <sub>GE</sub> = 0 V; T <sub>j</sub> = 125 °C         | 0,6       |         | mJ  |
| Mechani              | cal data                                               |           |         | •   |
| M1                   | mounting torque                                        |           | 2       | Nm  |
| w                    |                                                        | 21        |         | g   |
| Case                 | SEMITOP <sup>®</sup> 2                                 | T 47      |         |     |
|                      |                                                        |           |         |     |


GD
















This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.