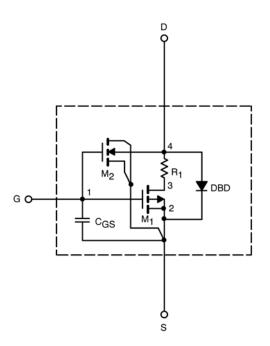


SPICE Device Model Si9434BDY Vishay Siliconix

P-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

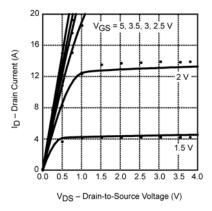
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

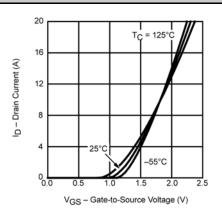
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

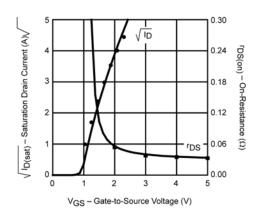
SPICE Device Model Si9434BDY Vishay Siliconix

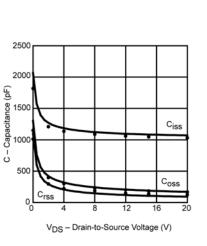
SPECIFICATIONS (T_J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static	•		•		
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = -250 μ A	0.80		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = -5 V, V_{GS} = -4.5 V$	156		А
Drain-Source On-State Resistance ^a	<i>r</i>	V_{GS} = -4.5 V, I _D = -6.3 A	0.034	0.033	Ω
	r _{DS(on)}	V_{GS} = -2.5 V, I _D = -5.1 A	0.043	0.044	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -5 V, I_D = -6.3 A$	15	10	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = -2.6 A, $V_{\rm GS}$ = 0 V	-0.80	-0.80	V
Dynamic ^b	•		•		
Total Gate Charge	Qg	V_{DS} = -10 V, V_{GS} = -4.5 V, I_{D} = -6.3 A	11.6	12	nC
Gate-Source Charge	Q _{gs}		1.7	1.7	
Gate-Drain Charge	Q _{gd}		3.5	3.5	
Turn-On Delay Time	t _{d(on)}	V_{DD} = -10 V, R _L = 10 Ω I _D \cong -1 A, V _{GEN} = -4.5 V, R _G = 6 Ω	16	15	ns
Rise Time	tr		13	45	
Turn-Off Delay Time	t _{d(off)}		83	80	
Fall Time	t _f		9	60	

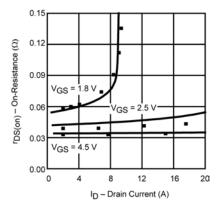
Notes

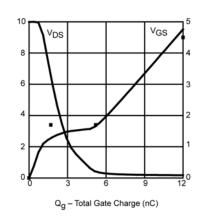

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.


VISHAY




SPICE Device Model Si9434BDY Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.