Dual P-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to $125^{\circ} \mathrm{C}$ temperature ranges under the pulsed 0 to 10 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

- Apply for both Linear and Switching Application
- Accurate over the -55 to $125^{\circ} \mathrm{C}$ Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

SPECIFICATIONS ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE NOTED)

Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$\mathrm{V}_{\text {GS(th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$	1.1		V
On-State Drain Current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{DS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}$	235		A
Drain-Source On-State Resistance ${ }^{\text {a }}$	$\mathrm{r}_{\text {DS(on) }}$	$\mathrm{V}_{\text {GS }}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.4 \mathrm{~A}$	0.020	0.020	Ω
		$\mathrm{V}_{G S}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-8.6 \mathrm{~A}$	0.024	0.024	
		$\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-3 \mathrm{~A}$	0.036	0.037	
Forward Transconductance ${ }^{\text {a }}$	$\mathrm{g}_{\text {fs }}$	$V_{D S}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.4 \mathrm{~A}$	23	15	S
Diode Forward Voltage ${ }^{\text {a }}$	$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{S}}=-2.9 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-0.81	-0.80	V
Dynamic ${ }^{\text {b }}$					
Total Gate Charge	Q_{g}	$\mathrm{V}_{\mathrm{DS}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-9.4 \mathrm{~A}$	25	23.5	nC
Gate-Source Charge	Q_{gs}		8.5	8.5	
Gate-Drain Charge	Q_{gd}		5	5	
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=15 \Omega \\ \mathrm{I}_{\mathrm{D}} \cong-1 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=-10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=6 \Omega \end{gathered}$	17	18	ns
Rise Time	t_{r}		22	40	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$		53	100	
Fall Time	t_{f}		73	60	
Source-Drain Reverse Recovery Time	t_{r}	$\mathrm{I}_{\mathrm{F}}=-2.9 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	47	50	

Notes
a. Pulse test; pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
b. Guaranteed by design, not subject to production testing.

