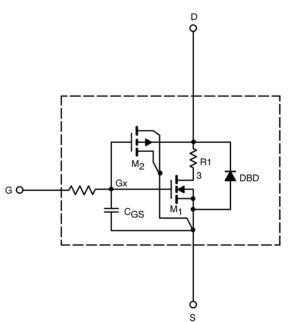


SPICE Device Model Si1058X Vishay Siliconix

N-Channel 20-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

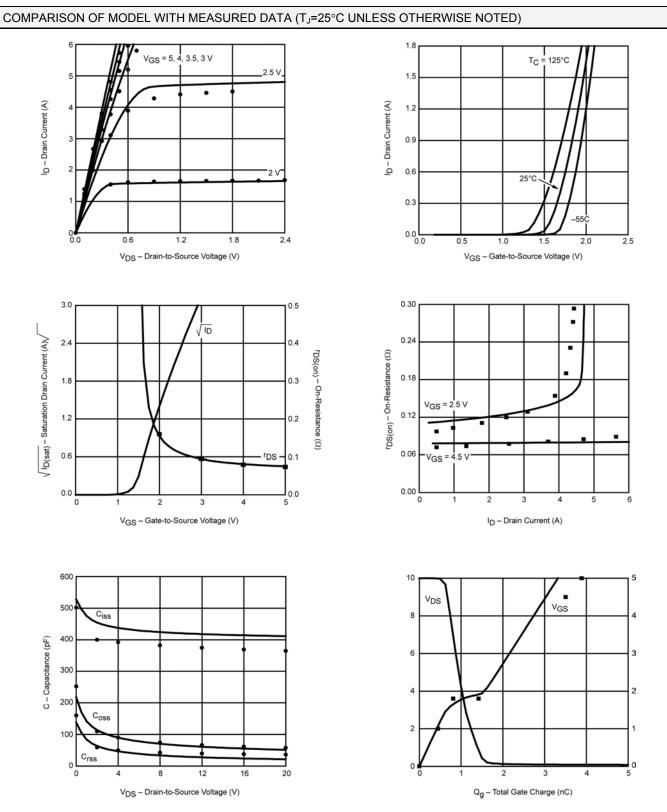
DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 4.5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.


SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			-		
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	1.1		V
On-State Drain Current ^a	I _{D(on)}	V_{DS} = 5 V, V_{GS} = 4.5 V	34		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 4.5 V, I _D = 1.3 A	0.079	0.076	Ω
		V_{GS} = 2.5 V, I_{D} = 1.1 A	0.115	0.103	
Forward Transconductance ^a	g _{fs}	V _{DS} = 10 V, I _D = 1.3A	4.7	5.5	S
Forward Voltage ^a	V _{SD}	I _S = 1 A	0.71	0.80	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	471	380	pF
Output Capacitance	C _{oss}		65	75	
Reverse Transfer Capacitance	C _{rss}		30	45	
Total Gate Charge	0	V_{DS} = 10 V, V_{GS} = 5 V, I_D = 1.3 A	3.4	3.9	nC
	Qg	V_{DS} = 10 V, V_{GS} = 4.5 V, I_{D} = 1.3 A	3.1	3.51	
Gate-Source Charge	Q _{gs}		0.82	0.82	
Gate-Drain Charge	Q _{gd}		0.61	0.61	

Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si1058X Vishay Siliconix

Note: Dots and squares represent measured data.