

### SOLID STATE DEVICES, INC.

14830 Valley View Blvd \* La Mirada, Ca 90638 Phone: (562) 404-7855 \* Fax: (562) 404-1773

### **DESIGNER'S DATA SHEET**

#### **FEATURES:**

- Rugged construction with poly silicon gate
- Low RDS (on) and high transconductance
- Excellent high temperature stability
- Very fast switching speed
- Fast recovery and superior dv/dt performance
- Increased reverse energy capability
- · Low input transfer capacitance for easy paralleling
- Hermetically sealed surface mount package
- TX, TXV and Space Level screening available
- Replaces: 2x IRF9130 Types

# SFF9130-28D

 $\begin{array}{c} \textbf{-11 AMP} \\ \textbf{-100 VOLTS} \\ \textbf{0.30} \\ \textbf{DUAL UNCOMMITED} \\ \textbf{P-CHANNEL POWER MOSFET} \end{array}$ 



| MAXIMUM RATINGS                                                                       |                 |             |       |
|---------------------------------------------------------------------------------------|-----------------|-------------|-------|
| CHARACTERISTIC                                                                        | SYMBOL          | VALUE       | UNIT  |
| Drain to Source Voltage                                                               | $ m V_{DS}$     | -100        | Volts |
| Gate to Source Voltage                                                                | $ m V_{GS}$     | ±20         | Volts |
| Continuous Drain Current $T_{C} = 25^{\circ} \text{C}$ $T_{C} = 100^{\circ} \text{C}$ | I <sub>D</sub>  | -11<br>-7   | Amps  |
| Operating and Storage Temperature                                                     | Top & Tstg      | -55 to +150 | °C    |
| Thermal Resistance, Junction to Case (Both)                                           | $R_{	heta JC}$  | 3.5         | °C/W  |
| Total Device Dissipation $T_{C} = 25^{\circ}C$ $T_{C} = 55^{\circ}C$                  |                 | 36<br>37    | Watts |
| Single Pulse Avalange Energy                                                          | E <sub>AS</sub> | 84          | mJ    |
| Repetitive Avalange Energy                                                            | E <sub>AR</sub> | 7.5         | mJ    |



PACKAGE OUTLINE: 28 PIN CLCC

**GATE (2):** 8

NOTE:

All drain/source pins must be connected on the PC board in order to maximize current carrying capability and to minimize RDS (on)



# SFF9130-28D

### **PRELIMINARY**



## SOLID STATE DEVICES, INC.

14830 Valley View Blvd \* La Mirada, Ca 90638 Phone: (562) 404-7855 \* Fax: (562) 404-1773

| ELECTRICAL CHARACTERIST                                                                                                             | ICS @ $T_J = 25^{\circ}C$ (U                               | Inless Othe                                                          | erwise Spe   | cified)              |                         |              |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|--------------|----------------------|-------------------------|--------------|
| RATING                                                                                                                              |                                                            | SYMBOL                                                               | MIN          | TYP                  | MAX                     | UNIT         |
| Drain to Source Breakdown Voltage<br>(VGS =0 V, ID =1mA)                                                                            |                                                            | BV <sub>DSS</sub>                                                    | -100         | -                    | -                       | V            |
| Temperature Coefficient of Breakdown Voltage                                                                                        |                                                            | $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$                               | 1            | 0.87                 | -                       | V            |
| Drain to Source ON State Resistance (VGS = -10 V)                                                                                   | $\mathbf{I_D} = 7\mathbf{A}$ $\mathbf{I_D} = 11\mathbf{A}$ | R <sub>DS(on)</sub>                                                  | -            | -                    | 0.30<br>0.35            | Ω            |
| Gate Threshold Voltage<br>(VDS = VGS, ID = 250µA)                                                                                   |                                                            | V <sub>GS(th)</sub>                                                  | -2.0         | -                    | -4.0                    | V            |
| Forward Transconductance<br>(VDS > ID(on) x RDS (on) Max, IDS = 7A)                                                                 |                                                            | $gf_s$                                                               | 3.0          | 5.0                  | -                       | <b>S</b> (℧) |
| Zero Gate Voltage Drain Current<br>(VDS = 80% rated VDS, VGS =0 V, T <sub>A</sub><br>(VDS = 80% rated VDS, VGS =0 V, T <sub>A</sub> | •                                                          | $I_{ m DSS}$                                                         | -            | -<br>-               | -25<br>250              | μΑ           |
| Gate to Source Leakage Forward<br>Gate to Source Leakage Reverse                                                                    | At rated VGS                                               | I <sub>GSS</sub>                                                     | -            | -                    | -100<br>100             | nA           |
| Total Gate Charge Gate to Source Charge Gate to Drain Charge                                                                        | VGS = -10 Volts<br>50% rated VDS<br>ID = -11A              | Qg<br>Qgs<br>Qgd                                                     | 15<br>1<br>2 | 26<br>3<br>14        | 29<br>7.1<br>21         | nC           |
| Turn on Delay Time Rise Time Turn off DELAY Time Fall Time                                                                          | VDD = 50% of<br>rated VDS<br>ID = 11A<br>RG = 7.5Ω         | $\begin{array}{c} t_{d~(on)} \\ tr \\ t_{d~(off)} \\ tf \end{array}$ | -<br>-<br>-  | 15<br>10<br>30<br>12 | 60<br>140<br>140<br>140 | nsec         |
| <b>Diode Forward Voltage</b> (I <sub>S</sub> = rated I <sub>D</sub> , V <sub>GS</sub> = 0V, T <sub>J</sub> = 25°C)                  |                                                            | V <sub>SD</sub>                                                      | -            | -                    | -4.7                    | V            |
| Diode Reverse Recovery Time<br>Reverse Recovery Charge                                                                              | TJ = 25°C<br>IF = 10A<br>$di/dt = 100A/\mu sec$            | t <sub>rr</sub><br>Qrr                                               | -            | 125                  | 250<br>3                | nsec<br>µC   |
| Input Capacitance Output Capacitance Reverse Transfer Capacitance                                                                   | VGS = 0  Volts<br>VDS = -25  Volts<br>f = 1  MHz           | Ciss<br>Coss<br>Crss                                                 | -<br>-<br>-  | 860<br>350<br>125    | -<br>-<br>-             | pF           |

For thermal derating curves and other characteristic curves please contact SSDI Marketing Department.

### **NOTES:**

 $\underline{1}$ / All package pins of the same terminations (Drain/Source/Gate) must be connected together to minimize  $R_{DS(on)}$  and maximize current carrying capability.