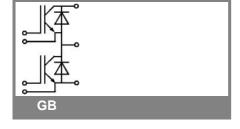
SEMIX 854GB176HD

Trench IGBT Modules

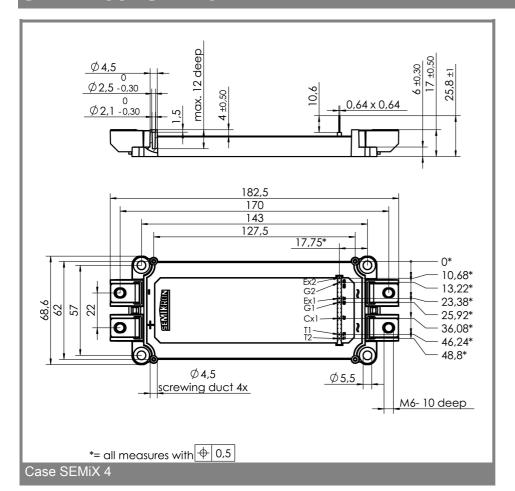
SEMIX 854GB176HD

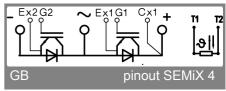
Target Data

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- · High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welders


Absolute	Maximum Ratings	T_c = 25 °C, unless otherwise	$T_c = 25 ^{\circ}\text{C}$, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1700	V					
V _{CES}	T _c = 25 (80) °C	830 (590)	Α					
I _{CRM}	t _p = 1 ms	1200	Α					
V_{GES}	ľ	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V_{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	590 (370)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	1200	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$	3800	Α					

Characte	ristics	T _c = 25 °C,	r _c = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 24 \text{ mA}$	5,2	5,8	6,4	V		
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25$ (125) °C			3,6	mA		
V _{CE(TO)}	T _j = 25 (125) °C		1 (0,9)	1,2 (1,1)	V		
r _{CE}	$V_{GE} = 0 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		1,7 (2,6)	2,1 (3)	mΩ		
V _{CE(sat)}	$I_{Cnom} = 600 \text{ A}, V_{GE} = 15 \text{ V},$		2 (2,45)	2,45 (2,9)	V		
	T _j = 25 (125) °C, chip level						
C _{ies}	under following conditions		39,6		nF		
C _{oes}	$V_{GE} = 0, V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}$		2,2		nF		
C _{res}			1,8		nF		
L _{CE}			22		nH		
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C				$m\Omega$		
$t_{d(on)}/t_r$	V _{CC} = 1200 V, I _{Cnom} = 600 A		410 / 70		ns		
$t_{d(off)}/t_{f}$	V _{GE} = = ± 15 V		775 / 145		ns		
$E_{on} \left(E_{off} \right)$	$R_{Gon} = R_{Goff} = 1 \Omega, T_j = 125 °C$		298 (202)		mJ		
Inverse diode							
$V_F = V_{EC}$	I_{Fnom} = 600 A; V_{GE} = 0 V; T_j = 25 (125) °C, chip level		2 (2,1)	2,2 (2,3)	V		
$V_{(TO)}$	T _i = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V		
r _T	T _i = 25 (125) °C		1,5 (2)	1,5 (2)	mΩ		
I _{RRM}	$I_{Fnom} = 600 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$		(830)		Α		
Q_{rr}	di/dt = 10000 A/µs		(230)		μC		
E _{rr}	V _{GE} = -15 V		(172)		mJ		
Thermal characteristics							
R _{th(j-c)}	per IGBT			0,039	K/W		
R _{th(j-c)D}	per Inverse Diode			0,09	K/W		
R _{th(j-c)FD}	per FWD				K/W		
R _{th(c-s)}	per module		0,03		K/W		
	ure sensor						
R ₂₅	T _c = 25 °C		5 ±5%		kΩ		
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2 - 1/T_1)]$; T[K];B		3420		K		
Mechanical data							
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm		
w			390		g		

SEMIX 854GB176HD

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.