DESCRIPTION

The SC1628 is a high performance step-up DC-DC converter, designed to drive an external power switch to generate programmable positive voltages. In the particularly suitable LCD contrast bias and flash memory programming power supply applications, typical full load efficiencies are 85% to 95%. The 4 V to 24 V input operation range allows the SC1628 to be powered directly by the battery pack in most batterypowered applications for greater efficiency. The output voltage can be scaled to 40 V or greater by two external resistors. A pulse-frequency modulation scheme is employed to maintain high efficiency conversion under wide input voltage ranges. Quiescent current is about $100 \mu \mathrm{~A}$ and can be reduced down to $8 \mu \mathrm{~A}$ in shutdown mode. With a switching frequency range of 90 kHz to 250 kHz , small size switching components may be used, which is ideal for battery powered portable equipment such as notebook and palmtop computers.

APPLICATIONS

- Flash memory programming power supply
- Positive LCD contrast bias for notebook and palmtop computers
- Step-up DC-DC converter module
- Telecom power supply

ORDERING INFORMATION

DEVICE $^{(1)}$	PACKAGE
SC1628CS	SO-8

Note:
(1) Add suffix 'TR' for tape and reel.

PIN CONFIGURATION

FEATURES

- 4 V to 24 V input voltage operation
- Adjustable output voltage
- Low quiescent current at $100 \mu \mathrm{~A}$
- Pulse-skipping and pulse-frequency modulation maintain high efficiency (max. 95\%)
- 90 kHz to 250 kHz oscillator frequency
- Power-saving shutdown mode ($8 \mu \mathrm{~A}$ typical)
- Push-pull driver output

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Maximum	Units
Supply Voltage	$\mathrm{V}_{\text {IN }}$	24	V
SHDN Voltage	$\mathrm{V}_{\text {SHDN }}$	15	V
Operating Temperature Range	T_{A}	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to 125	${ }^{\circ} \mathrm{C}$

January 30, 1998

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=13 \mathrm{~V}$

Parameter	Conditions	Min	Typ	Max	Units
Input Voltage		4		24	V
Quiescent Current	$\mathrm{V}_{\text {FB }}=1.5 \mathrm{~V}$		100	200	$\mu \mathrm{~A}$
Shutdown Mode Current	$\mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}$		8	20	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {REF }}$ Voltage	$\mathrm{I}_{\text {SOURCE }}=250 \mu \mathrm{~A}$	1.16	1.22	1.28	V
$\mathrm{~V}_{\text {REF }}$ Source Current		250			$\mu \mathrm{~A}$
DLOW "ON Resistance"			15		Ω
DHI "ON Resistance"			10		Ω
CL Threshold		45	60	75	mV
Shutdown Threshold	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {CL }}$	0.8	1.5	2.4	V
Shutdown Input Leakage Current	$\mathrm{V}_{\text {SHON }}<15 \mathrm{~V}$			1	$\mu \mathrm{~A}$

TYPICAL APPLICATIONS

Color LCD Contrast Bias Supply

Flash Memory Programming Supply

TYPICAL APPLICATIONS (cont.)

2-Cells to +12V Flash Memory Programmer

4-Cells to +30V Low Power Supply

Telecom +5V Supply

DEVICE OUTLINE - SO-8

DIMENSIONS					
DIM N	INCHES		MM		NOTE
	MIN	MAX	MIN	MAX	
A	.188	.197	4.80	5.00	
B	.149	.158	3.80	4.00	
C	.228	.244	5.80	6.20	
D	.050	BSC	1.27	BSC	
E	.013	.020	0.33	0.51	
F	.004	.010	0.10	0.25	
H	.053	.069	1.35	1.75	
J	.011	.019	0.28	0.48	
K	.007	.010	.19	.25	
L	0°	8°	0°	8°	
M	.016	.050	0.40	1.27	

PIN DESCRIPTIONS

PIN 1: $\quad \mathrm{V}_{\mathrm{IN}} \quad 4 \mathrm{~V}$ to 24 V input supply voltage.
PIN 2: $\quad V_{\text {REF }} \quad 1.22 \mathrm{~V}$ reference output. Bypass with a $0.047 \mu \mathrm{~F}$ capacitor to GND.
Sourcing capability is guaranteed to be greater than $250 \mu \mathrm{~A}$.

PIN 3: $\overline{\text { SHDN }}$ Logical input to shutdown the chip: $>1.5 \mathrm{~V}=$ normal operation, GND = shutdown.
Cannot be floating or forced greater than 15V. In shutdown mode DLOW and DHI pins are low.

PIN 4: FB Feedback signal input to comparator. Connecting a resistance R1 to $\mathrm{V}_{\text {Out }}$ and a resistance R2 to GND yields the output voltage:

$$
\mathrm{V}_{\text {OUT }}=\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2} \times \mathrm{V}_{\text {REF }}
$$

(refer to typical application circuit).

PIN 5: GND Power ground.
PIN 6: DLOW Driver sinking output. Connected to the gate of the external N -channel MOSFET or the base of the NPN bipolar transistor.

PIN 7: DHI Driver sourcing output. Connected to DLOW when using an external N channel MOSFET. When using an external NPN bipolar transistor, connect a base resistance R_{B} from this pin to DLOW. R_{B} value depends upon $\mathrm{V}_{\mathbb{I N}}$, the inductor value and the NPN current gain.
PIN 8: CL Current-limit input. The threshold voltage is 60 mV from $\mathrm{V}_{\mathbb{I}}$. This pin clamps the switch peak current under abnormal conditions.

PIN CONFIGURATION

