- Ideal for 315 MHz LO in Superhet Receivers with 10.7 MHz IF
- Very Low Series Resistance
- Quartz Stability
- Rugged, Hermetic, Low-Profile TO39 Case
- Complies with Directive 2002/95/EC (RoHS)

The RO2125 is a true one-port, surface-acoustic-wave (SAW) resonator in a low-profile TO39 case. It provides reliable, fundamental-mode, quartz frequency stabilization of local oscillators operating at 304.3 MHz . This SAW is designed for 315 MHz superhet receivers with 10.7 MHz IF (Philips UAA3201T). Applications include automotive-keyless-entry receivers operating in the USA under FCC Part 15, in Canada under DoC RSS-210, and in Italy.

Absolute Maximum Ratings

Rating	Value	Units
CW RF Power Dissipation (See: Typical Test Circuit)	+0	dBm
DC Voltage Between Any Two Pins (Observe ESD Precautions)	± 30	VDC
Case Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Characteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Absolute Frequency Tolerance from 304.300 MHz	f_{C}	$2,3,4,5$	304.225		304.375	MHz
	$\Delta_{\text {f }}$				± 75	kHz
Insertion Loss	IL	2, 5, 6		0.9	1.5	dB
Unloaded Q 50Ω Loaded Q	Q_{U}	5, 6, 7		18,300		
	Q_{L}			2,000		
Turnover Temperature Turnover Frequency Frequency Temperature Coefficient	T_{O}	6, 7, 8	10	25	40	${ }^{\circ} \mathrm{C}$
	f_{0}			f_{c}		
	FTC			0.037		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}^{2}$
Frequency Aging Absolute Value during the First Year	$\left\|\mathrm{f}_{\mathrm{A}}\right\|$	1		≤ 10		ppm/yr
DC Insulation Resistance between Any Two Pins		5	1.0			$\mathrm{M} \Omega$
RF Equivalent RLC Model Motional Resistance	R_{M}	5, 7, 9		10	19	Ω
Motional Resistance Motional Inductance Motional Capacitance Pin 1 to Pin 2 Static Capacitance	L_{M}			95.7126		$\mu \mathrm{H}$
	C_{M}			2.85803		fF
	C_{0}	5, 6, 9	2.9	3.2	3.5	pF
Transducer Static Capacitance	C_{P}	5, 6, 7, 9		2.9		pF
Test Fixture Shunt Inductance	$\mathrm{L}_{\text {TEST }}$	2, 7		84		nH
Lid Symbolization (in Addition to Lot and/or Date Code)	RFM RO2125					

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes:

1. Frequency aging is the change in f_{C} with time and is specified at $+65^{\circ} \mathrm{C}$ or less. Aging may exceed the specification for prolonged temperatures above $+65^{\circ} \mathrm{C}$. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
2. The center frequency, f_{C}, is measured at the minimum insertion loss point, $\mathrm{IL}_{\mathrm{MIN}}$, with the resonator in the 50Ω test system (VSWR $\leq 1.2: 1$). The shunt inductance, $\mathrm{L}_{\text {TEST }}$, is tuned for parallel resonance with C_{O} at f_{C}. Typically, $\mathrm{f}_{\mathrm{OSCILLA}}$ TOR or $f_{\text {TRANSMITTER }}$ is less than the resonator f_{C}.
3. One or more of the following United States patents apply: 4,454,488 and 4,616,197 and others pending.
4. Typically, equipment designs utilizing this device require emissions testing and government approval, which is the responsibility of the equipment manufacturer.
5. Unless noted otherwise, case temperature $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$.
6. The design, manufacturing process, and specifications of this device are subject to change without notice.
7. Derived mathematically from one or more of the following directly measured parameters: $\mathrm{f}_{\mathrm{C}}, \mathrm{IL}, 3 \mathrm{~dB}$ bandwidth, f_{C} versus T_{C}, and C_{O}.
8. Turnover temperature, T_{0}, is the temperature of maximum (or turnover) frequency, f_{O}. The nominal frequency at any case temperature, T_{C}, may be calculated from: $f=f_{O}\left[1-\mathrm{FTC}\left(\mathrm{T}_{\mathrm{O}}-\mathrm{T}_{\mathrm{C}}\right)^{2}\right]$. Typically, oscillator T_{O} is $20^{\circ} \mathrm{C}$ less than the specified resonator T_{O}.
9. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_{O} is the static (nonmotional) capacitance between pin1 and pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes case parasitic capacitance with a floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25 pF to C_{O}.

Electrical Connections

This one-port, two-terminal SAW resonator is bidirectional. The terminals are interchangeable with the exception of circuit board layout.

Pin	Connection
1	Terminal 1
2	Terminal 2
3	Case Ground

Typical Test Circuit

The test circuit inductor, $L_{T E S T}$, is tuned to resonate with the static capacitance, C_{O} at F_{C}.

Electrical Test:

Power Test:

CW RF Power Dissipation $=$ Pincident $^{-} \mathbf{P}_{\text {REFLECTED }}$

Typical Application Circuits

Typical Low-Power Transmitter Application:

Typical Local Oscillator Application:

Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include oscillator temperature characteristics.

Equivalent LC Model

The following equivalent LC model is valid near resonance:

Case Design

Dimensions	Millimeters		Inches		
	Min	Max	Min	Max	
A		9.40		0.370	
B		3.18		0.125	
C	2.50	3.50	0.098	0.138	
D	0.46 Nominal		0.018 Nominal		
E	5.08 Nominal		0.200 Nominal		
F	2.54 Nominal		0.100 Nominal		
G	2.54 Nominal	0.100 Nominal			
H					
J	1.40	1.02	0.040		

