Preliminary

FAIRCHILD SEMICONDUCTOR®

RMPA5252 4.9–5.9 GHz InGaP HBT WLAN Linear Power Amplifier

Features

- Full 4.9 to 5.9GHz operation
- 34dB small signal gain
- 3% EVM at 18dBm modulated power out
- 3.3V single positive supply operation
- Integrated power detector with 20dB dynamic range
- Lead-free RoHS compliant 3 x 3 x 0.9 mm leadless package
 Internally matched to 50 Ohms and DC blocked RF input/
- Internally matched to 50 Onms and DC blocked RF I output
- Optimized for use in 802.11a applications

Device

General Description

The RMPA5252 power amplifier is designed for high performance WLAN applications in the 4.9-5.9 GHz frequency band. The low profile 16 pin $3 \times 3 \times 0.9$ mm package with internal matching on both input and output to 50 Ohms minimizes next level PCB space and allows for simplified integration. An on-chip detector provides power sensing capability. The PA's low power consumption and excellent linearity are achieved using our InGaP Heterojunction Bipolar Transistor (HBT) technology.

Electrical Characteristics¹ 802.11a OFDM Modulation

(with 176 µs burst time, 100 µs idle time) 54 Mbps Data Rate, 16.7 MHz Bandwidth

Parameter	Min	Тур	Max	Units
Frequency	4.9		5.9	GHz
Collector Supply Voltage	3.0	3.3	3.6	V
Mirror Supply Voltage		2.4		V
Mirror Supply Current		28		mA
Gain		34		dB
Total Current @ 18dBm P _{OUT}		275		mA
EVM @ 18dBm P _{OUT} ²		3.0		%
Detector Output @ 18dBm P _{OUT}		500		mV
Detector Threshold ³		5		dBm

Notes:

1. VCC = 3.3V, VM12, VM34 = 2.4V, $T_{\text{A}} = \ 25^{\circ}\text{C},$ PA is constantly biased, 50% system.

Percentage includes system noise floor of EVM = 0.8%.

3. $\mathrm{P}_{\mathrm{OUT}}$ measured at P_{IN} corresponding to power detection threshold.

March 2005

Electrical Characteristics¹ Single Tone

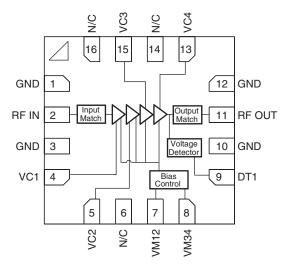
Parameter	Min	Тур	Max	Units
Frequency	4.9		5.9	GHz
Supply Voltage (VCC)	3.0	3.3	3.6	V
Mirror Supply Voltage (VM)	2.1	2.4	2.6	V
Gain		34		dB
Total Quiescent Current		180		mA
Bias Current at pin VM (total) ²		28		mA
P1dB Compression		26		dBm
Current @ P1dB Compression		500		mA
Shutdown Current (VM12, VM34 = 0V)		<1.0		μA
Input Return Loss		10		dB
Output Return Loss		12		dB
Detector Output at P1dB Compression		1.1		V
Detector Pout Threshold ⁴		5		V
Turn-On Time ³		<1.0		μS

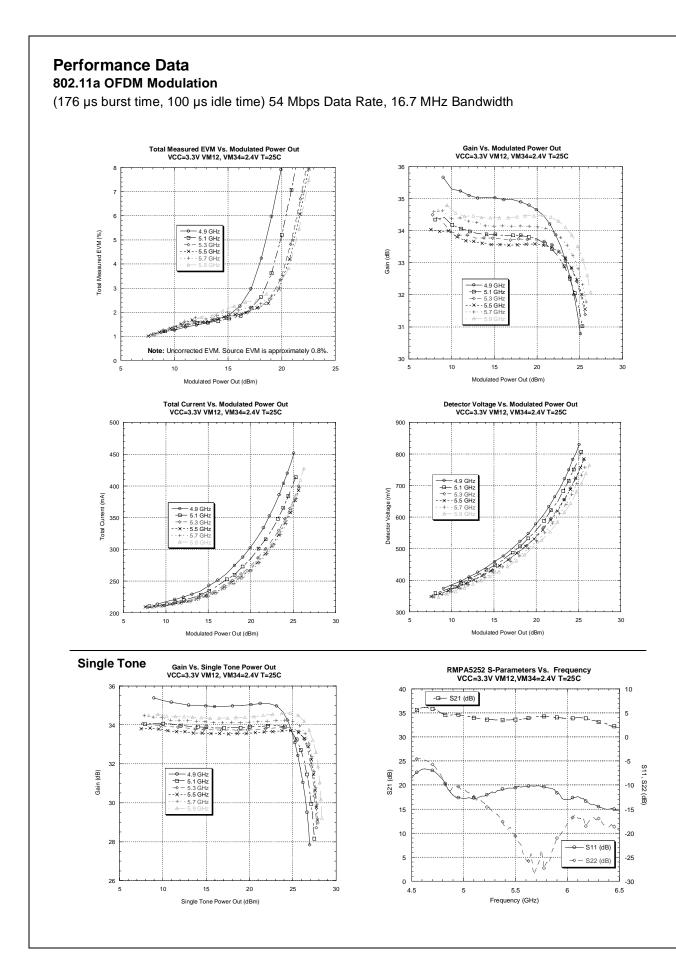
Notes:

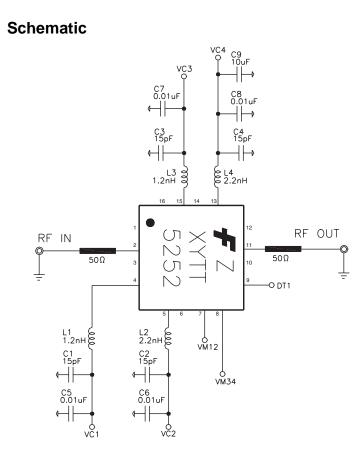
1. VCC = 3.3V, VM12, VM34 = 2.4V, T_{A} = 25°C, PA is constantly biased, 50¾ system.

2. Power Control bias current is included in the total quiescent current.

3. Measured from Device On signal turn on, to the point where RF P_{OUT} stabilizes to 0.5dB. 4. P_{OUT} measured at P_{IN} corresponding to power detection threshold.

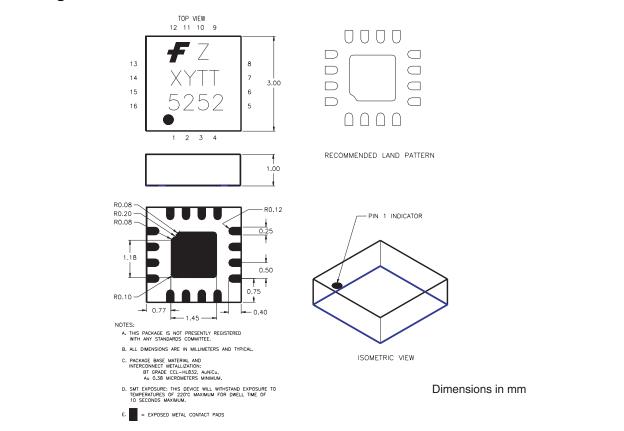

Absolute Ratings¹


Symbol Parameter		Ratings	Units
VCC	Positive Supply Voltage	5	V
ICC	Supply Current	1000	mA
PC	Positive Bias Voltage	4	V
P _{IN}	RF Input Power	+5	dBm
Case Operating Temperature		-40 to +85	°C
T _{STG}	Storage Temperature	-55 to +150	°C


Note:

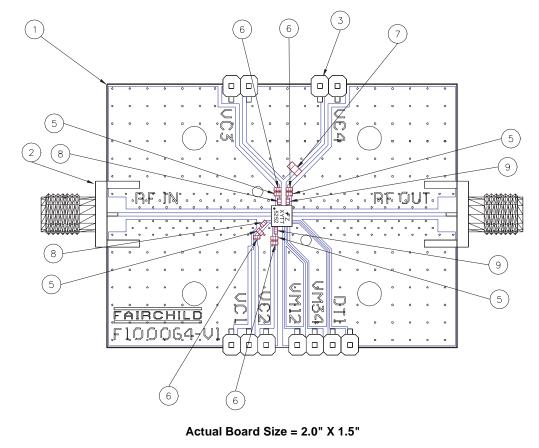
1. No permanent damage with one parameter set at extreme limit. Other parameters set to typical values.

Functional Block Diagram



Pin	Description
1	GND
2	RF IN
3	GND
4	VC1
5	VC2
6	N/C
7	VM12
8	VM34
9	DT1
10	GND
11	RF OUT
12	GND
13	VC4
14	N/C
15	VC3
16	N/C
17	CENTER GND

Package Outline



1
RMPA
PA5252
IPA5252 4.9–5.9 GHz InGaP HBT WLAN Linear Power
5.9
9 G
GHz
InGa
заР
Ξ
HBT
٤
۷L
ź
Ē
nea
ar
Po
Ň
er 1
An
lqı
ifi
er

Evaluation Board Bill of Materials

Qty	Item No.	Part Number	Description	Vendor
1	1	F100064	PC Board	Fairchild
2	2	#142-0701-841	SMA Connector	Johnson
10	3	#S1322-XX-ND	RT Angle Sgl M Header	Digikey
Ref	4		Assembly, RMPA5252	Fairchild
4	5 (C1, C2, C3, C4)	250R07C150JV4	15pF Capacitor	Johanson
4	6 (C5, C6, C7, C8)	GRM36X7R103K25	10,000pF Capacitor	Murata
1	7 (C9)	GRM21BR60J106KE01L	10µF Capacitor	Murata
2	8 (L1, L3)	LL1005-FHL1N2S	1.2nH Inductor	Toko
2	9 (L2, L4)	LL1005-FHL2N2S	2.2nH Inductor	Toko
A/R	10	SN63	Solder Paste	Indium Corp.
A/R	11	SN96	Solder Paste	Indium Corp.

Evaluation Board Layout

Evaluation Board Turn-On Sequence¹

Recommended turn-on sequence:

1) Connect common ground terminal to the Ground (GND) pin on the board.

2) Connect voltmeter to DT1 pin (Detector Voltage).

3) Connect VC1, VC2, VC3, VC4 (Collector voltages) together using jumper cables. Apply a single positive supply voltage (3.3V) to pin VC4.

4) Connect VM12 and VM34 (Power Control voltage) together using a jumper cable. Apply a single positive supply voltage (2.4V) to pin VM12.

5) At this point, you should expect to observe the following positive currents flowing into the pins::

Pin	Current
VCC (total)	180 mA
VM12 and VM34	28 mA

6) Apply input RF power to SMA connector pin RFIN. Current for pin VCC will vary depending on the input drive level.

7) Vary positive voltage VM12, VM34 from +2.4 V to +0 V to shut down the amplifier or alter the power level. Shut down current flow into the pins:

Pin	Current
VCC (total)	<1 nA

Recommended turn-off sequence:

Use reverse order described in the turn-on sequence above.

Note:

1. Turn on sequence is not critical and it is not necessary to sequence power supplies in actual system level design

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST	IntelliMAX™	POP™	SPM™
ActiveArray™	FASTr™	ISOPLANAR™	Power247 [™]	Stealth™
Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™
CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CROSSVOLT™	GlobalOptoisolator™	MicroFET™	PowerTrench	SuperSOT™-6
DOME™	GTO™	MicroPak™	QFET	SuperSOT™-8
EcoSPARK™	HiSeC™	MICROWIRE™	QS™	SyncFET™
E ² CMOS [™]	I²C™	MSX™	QT Optoelectronics [™]	TinyLogic
EnSigna™	<i>i-Lo</i> ™	MSXPro™	Quiet Series [™]	TINYOPTO™
FACT™	ImpliedDisconnect [™]	OCX™	RapidConfigure™	TruTranslation™
FACT Quiet Serie	es™	OCXPro™	RapidConnect™	UHC™
Across the board	I. Around the world.™	OPTOLOGIC	µSerDes™	UltraFET
The Power Franchise		OPTOPLANAR™	SILENT SWITCHER	UniFET™
Programmable Active Droop™		PACMAN™	SMART START™	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. 115