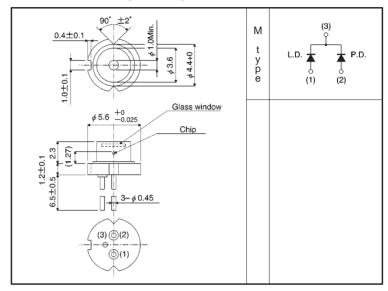
# AlGaAs laser diodes RLD-78MA


The RLD-78MA is world's first mass-produced laser diodes that is manufactured by molecular beam epitaxy. The signal-to-noise ratio is stable in comparison to conventional manufacturing techniques. This device is ideal for use in compact disc players.

## ApplicationsCompact disc players

#### Features

- Signal-to-noise ratio guaranteed over entire operating temperature range.
- 2) Reduced facet reflection.
- One-third the dispersion compared with conventional laser diodes.
- 4) High-precision, compact package.

#### External dimensions (Units: mm)



#### ● Absolute maximum ratings (Tc = 25°C)

| Parameter             |                | Symbol   | Limits               | Unit |
|-----------------------|----------------|----------|----------------------|------|
| Output                |                | Po       | 5                    | mW   |
| Reverse<br>voltage    | Laser          | VR       | 2                    | V    |
|                       | PIN photodiode | VR (PIN) | 30                   | V    |
| Operating temperature |                | Topr     | -10~ <del>+</del> 60 | °    |
| Storage temperature   |                | Tstg     | -40~+85              | °C   |

Laser diodes RLD-78MA

#### • Electrical and optical characteristics (Tc = 25°C)

| Parameter                         | Symbol                  | Min. | Тур. | Max. | Unit  | Conditions                      |  |
|-----------------------------------|-------------------------|------|------|------|-------|---------------------------------|--|
| Threshold current                 | Ith                     | _    | 35   | 60   | mA    | _                               |  |
| Operating current                 | lop                     | _    | 45   | 70   | mA    | Po=3mW                          |  |
| Operating voltage                 | Vop                     | _    | 1.9  | 2.3  | ٧     | Po=3mW                          |  |
| Differential efficiency           | η                       | 0.1  | 0.25 | 0.6  | mW/mA | 2mW<br>I(3mW)—I(1mW)            |  |
| Monitor current                   | lm                      | 0.1  | 0.2  | 0.6  | mA    | Po=3mW,V <sub>R(PIN)</sub> =15V |  |
| Parallel divergence angle         | θ // *                  | 8    | 11   | 15   | deg   | Po=3mW                          |  |
| Perpendicular<br>divergence angle | <i>θ</i> <sub>⊥</sub> * | 20   | 37   | 45   | deg   |                                 |  |
| Parallel deviation angle          | Δ θ //                  | _    | _    | ±2   | deg   |                                 |  |
| Perpendicular deviation angle     | Δ θ ⊥                   | _    | _    | ±з   | deg   |                                 |  |
| Emission point accuracy           | ΔX<br>ΔΥ<br>ΔΖ          | _    | _    | ±80  | μm    | _                               |  |
| Peak emission wavelength          | λ                       | 770  | 785  | 810  | nm    | Po=3mW                          |  |
| Signal-to-noise ratio             | S/N                     | 60   | _    | _    | dB    | f=720kHz, Δf=10kHz              |  |

<sup>\*</sup>  $\theta$  // and  $\theta$   $_{\perp}$  are defined as the angle within which the intensity is 50% of the peak value.

### Electrical and optical characteristic curves

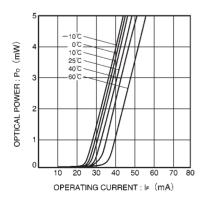



Fig. 1 Optical output vs. operating current

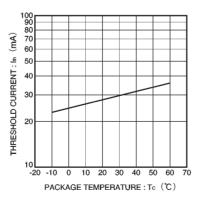



Fig. 2 Dependence of threshold current on temperature

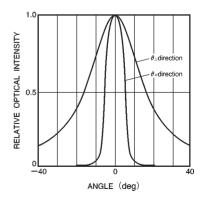



Fig. 3 Far field pattern

Laser diodes RLD-78MA

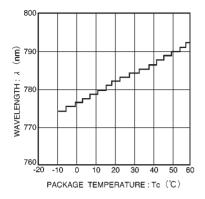



Fig. 4 Dependence of wavelength on temperature

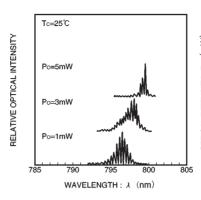



Fig. 5 Dependence of emission spectrum on optical output

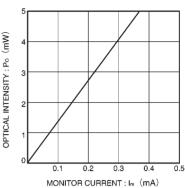



Fig. 6 Monitor current vs . optical output




Fig. 7 Temperature dependence of noise

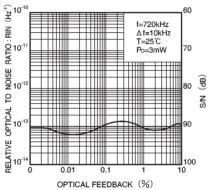



Fig. 8 Dependence of noise on optical feedback