Precision 7V Reference #### DESCRIPTION The RH1021-7 is a precision 7V reference with ultralow drift and noise, extremely good long-term stability and almost total immunity to input voltage variations. The reference output will source and sink up to 10mA. This reference can also be used as a shunt regulator (2-terminal Zener). Unique circuit design makes the RH1021-7 the first IC reference to offer ultralow drift without the use of high power on-chip heaters. The wafer lots are processed to Linear Technology's inhouse Class S flow to yield circuits usable in stringent military applications. ### **ABSOLUTE MAXIMUM RATINGS** | Input Voltage | 40V | |--------------------------------------|----------| | Input/Output Voltage Differential | 35V | | Output to Ground Voltage | | | (Shunt Mode Current Limit) | 10V | | Output Short-Circuit Duration | | | V _{IN} = 35V | | | V _{IN} 20VIn | definite | | Operating Temperature Range55°C to |) 125°C | | Storage Temperature Range – 65°C to | 150°C | | Lead Temperature (Soldering, 10 sec) | . 300°C | | | | 17, LTC and LT are registered trademarks of Linear Technology Corporation. ### **BURN-IN CIRCUIT** ### PACKAGE/ORDER INFORMATION * Connected internally. Do not connect external circuitry to these pins. # TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation) (Note 9) | | | | | T _A = 25°C | | | SUB- | -55°C | Τ_Δ | 125°C | SUB- | | |--------------------|--|-------------------------------|--------|-----------------------|-----|------|-------|-------|-----|---------|------------|--| | SYMBOL | PARAMETER | CONDITIONS | NOTES | MIN | TYP | MAX | GROUP | MIN | TYP | MAX | GROUP | UNITS | | V _{OUT} | Output Voltage | | 1 | 6.95 | | 7.05 | 1 | | | | | V | | TCV _{OUT} | Output Voltage
Temperature Coefficient | RH1021BM-7
RH1021DM-7 | 2 2 | | | | | | | 5
20 | 2,3
2,3 | ppm/°C
ppm/°C | | V _{OUT} | Line Regulation | 8.5V V _{IN} 12V | 3 | | | 4 | 1 | | | 8 | 2,3 | ppm/V | | VIN | | 12V V _{IN} 40V | 3 | | | 2 | 1 | | | 4 | 2,3 | ppm/V | | V _{OUT} | Load Regulation
(Sourcing Current) | O I _{OUT} 10mA | 3 | | | 25 | 1 | | | 40 | 2,3 | ppm/mA | | | Load Regulation (Shunt Mode) | 1.2mA I _{OUT} 10mA | 3,4 | | | 100 | 1 | | | 150 | 2,3 | ppm/mA | | Is | Supply Current (Series Mode) | | | | | 1.2 | 1 | | | 1.5 | 2,3 | mA | | I _{MIN} | Minimum Current (Shunt Mode) | V _{IN} Is Open | | | | 1.0 | 1 | | | 1.2 | 2,3 | mA | | | Output Voltage Noise | 0.1Hz f 10Hz
10Hz f 1kHz | 5
5 | | 4 | 4 | 4 | | | | | μV _{P-P}
μV _{RMS} | | | Long-Term Stability
of V _{OUT} | T = 1000 Hrs
Noncumulative | 6 | | 7 | | | | | | | ppm | | | Temperature Hysteresis of V _{OUT} | T = ±25°C | | | 3 | | | | | | | ppm | # TABLE 1A: ELECTRICAL CHARACTERISTICS (Postirradiation) (Note 7) | SYMBOL | PARAMETER | CONDITIONS | NOTES | 10Kra
MIN | ad(Si)
MAX | 20Kra
Min | ad(Si)
MAX | 50Kr
MIN | ad(Si)
MAX | 100Kr
MIN | ad(Si)
MAX | 200Ki
Min | rad(Si)
MAX | UNITS | |----------------------------------|---|---|--------|--------------|---------------|--------------|---------------|-------------|---------------|--------------|---------------|--------------|----------------|------------------| | V _{OUT} | Output Voltage | | 1 | 6.95 | 7.05 | 6.95 | 7.05 | 6.95 | 7.07 | 6.94 | 7.06 | 6.93 | 7.07 | V | | TCV _{OUT} | Output Voltage
Temperature Coefficient | RH1021BM-7
RH1021DM-7 | 2
2 | | 5
20 | | 5
20 | | 5
20 | | 7
22 | | 10
25 | ppm/°C
ppm/°C | | V _{OUT} V _{IN} | Line Regulation | 8.5V V _{IN} 12V
12V V _{IN} 40V | 3 | | 4
2 | | 4
2 | | 4.5
2 | | 5
2 | | 6
3 | ppm/V
ppm/V | | V _{OUT} | Load Regulation
(Sourcing Current) | 0 I _{OUT} 10mA | 3,8 | | 25 | | 25 | | 25 | | 25 | | 25 | ppm/mA | | | Load Regulation
(Shunt Mode) | 1.2mA I _{OUT} 10mA | 3,4 | | 100 | | 100 | | 100 | | 100 | | 150 | ppm/mA | | I _{MIN} | Minimum Current
(Shunt Mode) | V _{IN} Is Open | | | 1.2 | | 1.2 | | 1.2 | | 1.2 | | 1.2 | mA | | I _S | Supply Current
(Series Mode) | | | | 1.0 | | 1.0 | | 1.0 | | 1.0 | | 1.0 | mA | ### TABLE 1A: ELECTRICAL CHARACTERISTICS **Note 1:** Output voltage is measured immediately after turn-on. Changes due to chip warm-up are typically less than 0.005%. **Note 2:** Temperature coefficient is measured by dividing the change in output voltage over the temperature range by the change in temperature. Separate tests are done for hot and cold; T_{MIN} to 25°C and 25°C to T_{MAX} . Incremental slope is also measured at 25°C. **Note 3:** Line and load regulation are measured on a pulse basis. Output changes due to die temperature change must be taken into account separately. Package thermal resistance is 150°C/W for the TO-5 (H) package. **Note 4:** Shunt mode regulation is measured with the input open. With the input connected, shunt mode current can be reduced to 0mA. Load regulation will remain the same. **Note 5:** RMS noise is measured with a 2-pole highpass filter at 10Hz and a 2-pole lowpass filter at 1kHz. The resulting output is full wave rectified and then integrated for a fixed period, making the final reading an average as opposed to RMS. Correction factors are used to convert from average to RMS and to correct for the nonideal bandpass of the filters. Peak-to-peak noise is measured with a single highpass filter at 0.1Hz and a 2-pole lowpass filter at 10Hz. The unit is enclosed in a still-air environment to eliminate thermocouple effects on the leads. Test time is 10 seconds. Note 6: Consult factory for units with long term stability data. **Note 7:** $V_{IN} = 12V$, $I_{OUT} = 0$, $T_A = 25$ °C, unless otherwise noted. Note 8: $I_{OUT(MAX)}$ (Sourcing) is 5mA for exposures greater than 100Krad (Si). **Note 9:** $V_{IN} = 12V$, $I_{OUT} = 0$, unless otherwise noted. ### TABLE 2: ELECTRICAL TEST REQUIREMENTS | MIL-STD-883 TEST REQUIREMENTS | SUBGROUP | |--|----------| | Final Electrical Test Requirements (Method 5004) | 1*,2,3,4 | | Group A Test Requirements (Method 5005) | 1,2,3,4 | | Group B and D for Class S, and
Group C and D for Class B
End Point Electrical Parameters (Method 5005) | 1 | ^{*} PDA Applies to subgroup 1. See PDA Test Notes. #### **PDA Test Notes** The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883. The verified failures of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot. Linear Technology Corporation reserves the right to test to tighter limits than those given. ### TOTAL DOSE BIAS CIRCUIT ## TYPICAL PERFORMANCE CHARACTERISTICS