RoHS Compliant \& Pb-Free Product

Typical Applications

- UHF Digital and Analog Receivers
- Digital Communication Systems
- Spread-Spectrum Communication Systems
- Commercial and Consumer Systems
- 433MHz and 915 MHz ISM Band Receivers
- General Purpose Frequency Conversion

Product Description

The RF2418 is a monolithic integrated UHF receiver front-end. The IC contains all of the required components to implement the RF functions of the receiver except for the passive filtering and LO generation. It contains an LNA (low-noise amplifier), a second RF amplifier, a dualgate GaAs FET mixer, and an IF output buffer amplifier which will drive a 50Ω load. In addition, the IF buffer amplifier may be disabled and a high impedance output is provided for easy matching to IF filters with high impedances. The output of the LNA is made available as an output to permit the insertion of a bandpass filter between the LNA and the RF/Mixer section. The LNA section may be disabled by removing the VDD1 connection to the IC.

Optimum Technology Matching ${ }^{\circledR}$ Applied

\square Si BJT	\square GaAs HBT	\square GaAs MESFET
\square Si Bi-CMOS	\square SiGe HBT	\square Si CMOS
\square InGaP/HBT	\square GaN HEMT	\square SiGe Bi-CMOS

Functional Block Diagram

Package Style: SOIC-14

Features

- Single 3V to 6.5V Power Supply
- High Dynamic Range
- Low Current Drain
- High LO Isolation
- LNA Power Down Mode for Large Signals

Ordering Information

RF2418	Low Current LNA/Mixer
RF2418 PCBA	Fully Assembled Evaluation Board

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to 7	$\mathrm{~V}_{\mathrm{DC}}$
Input LO and RF Levels	+6	$\mathrm{dBm}^{\circ} \mathrm{Co}$
Ambient Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

Caution! ESD sensitive device. RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. RoHS marking based on EUDirective2002/95/EC (at time of this printing). However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does no assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition	
	Min.	Typ.	Max.			
Overall RF Frequency Range Cascade Power Gain Cascade IP_{3} Cascade Noise Figure		$\begin{gathered} 400 \text { to } 1100 \\ 23 \\ -13 \\ 2.4 \end{gathered}$		$\begin{gathered} \mathrm{MHz} \\ \mathrm{~dB} \\ \mathrm{dBm} \\ \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{RF}=850 \mathrm{MHz}, \\ & \mathrm{LO}=921 \mathrm{MHz} \end{aligned}$ High impedance output Referenced to the input Single sideband, includes image filter with 1.0 dB insertion loss	
First Section (LNA) Noise Figure Input VSWR Input IP3 Gain Reverse Isolation Output VSWR	$\begin{gathered} +3.0 \\ 13 \end{gathered}$	$\begin{gathered} 1.8 \\ 1.5: 1 \\ +4.0 \\ 14 \\ 40 \\ 1.5: 1 \end{gathered}$	2.0	dB dBm dB dB	With external series matching inductor	
Second Section (RF Amp, Mixer, IF1) Noise Figure Input VSWR Input IP3 Conversion Power Gain Output Impedance	7	$\begin{gathered} 9.5 \\ 1.5: 1 \\ +1 \\ 9 \\ 4000 \\| 10 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{dB} \\ \mathrm{dBm} \\ \mathrm{~dB} \\ \Omega \\ \hline \end{gathered}$	High impedance output Single Sideband With external series matching inductor Open Collector	
Second Section (RF Amp, Mixer, IF2) Noise Figure Input VSWR Input IP3 Conversion Gain Output Impedance	$\begin{gathered} -0.5 \\ 5 \end{gathered}$	$\begin{gathered} 10 \\ 1.5: 1 \\ 0 \\ 6 \\ 30 \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{dB} \\ \\ \mathrm{dBm} \\ \mathrm{~dB} \\ \Omega \\ \hline \end{gathered}$	Buffered output, 50Ω load Single Sideband With external series matching inductor	
LO Input LO Frequency LO Level LO to RF Rejection LO to IF Rejection LO Input VSWR		$\begin{gathered} 300 \text { to } 1200 \\ -6 \text { to }+6 \\ 15 \\ 40 \\ 1.3: 1 \end{gathered}$		MHz dBm dB dB	With pin 5 connected to ground. In order to achieve a low VSWR match at this input, an 82Ω resistor to ground is placed in parallel with this port.	
Power Supply Voltage Current Consumption	$\begin{gathered} 3.0 \\ 12 \\ 6 \end{gathered}$	$\begin{gathered} 14 \\ 20 \\ 9 \end{gathered}$	$\begin{aligned} & 6.5 \\ & 26 \\ & 20 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{gathered}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, LNA On, Mixer On, Buffer Off $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, LNA On, Mixer On, Buffer On $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, LNA Off, Mixer On, Buffer Off	

Pin	Function	Description	Interface Schematic
$\mathbf{1}$	LNA IN	A series 10nH matching inductor is necessary to achieve specified gain and noise figure at 900 MHz. This pin is NOT internally DC-blocked. An external blocking capacitor must be provided if the pin is connected to a device with DC present. A DC path to ground (i.e. an inductor or resis- tor to ground) is, however, acceptable at this pin. If a blocking capacitor is required, a value of 22pF is recommended.	
$\mathbf{2}$	GND	Ground connection. Keep traces physically short and connect immedi- ately to ground plane for best performance.	
$\mathbf{3}$	VDD1	Supply Voltage for the LNA only. A 22pF external bypass capacitor is required and an additional 0.01 μ is required if no other low frequency bypass capacitors are near by. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
$\mathbf{4}$	VDD2	For large input signals, VDD1 may be disconnected, resulting in the LNA's gain changing from +11dB to -26dB and current drain decreas- ing by 4mA. If the LNA is never required for use, then this pin can be left unconnected or grounded, and Pin 11 is used as the first input.	Power supply for the IF buffer amplifier. If the high impedance mixer output is being used, then this pin is not connected.
$\mathbf{5}$	IF BYP	If this pin is connected to ground, an internal 10pF capacitor is con- nected in parallel with the mixer output. This capacitor functions as an LO trap, which reduces the amount of LO to IF bleed-through and pre- vents high LO voltages at the mixer output from degrading the mixer's dynamic range. At higher IF frequencies, this capacitance, along with parasitic layout capacitance, should be parallel resonated out by the choice of the bias inductor value at pin 7. If the internal capacitor is not connected to ground, the buffer amplifier could become unstable. A $\sim 10 p F ~ c a p a c i t o r ~ s h o u l d ~ b e ~ a d d e d ~ a t ~ t h e ~ o u t p u t ~ t o ~ m a i n t a i n ~ t h e ~ b u f f e r s ~$	
stability, but the gain will not be significantly affected.			

RF2418

Pin	Function	Description	Interface Schematic
10	GND	Same as pin 2.	
11	RF IN	Mixer RF Input port. For a 50Ω match at 900 MHz use a 15 nH series inductor. This pin is NOT internally DC-blocked. An external blocking capacitor must be provided if the pin is connected to a device with DC present. A DC path to ground (i.e. an inductor or resistor to ground) is, however, acceptable at this pin. If a blocking capacitor is required, a value of 22 pF is recommended. To minimize the mixer's noise figure, it is recommended to have a RF bandpass filter before this input. This will prevent the noise at the image frequency from being converted to the IF.	
12	GND	Same as pin 2.	
13	GND	Same as pin 2.	
14	LNA OUT	50Ω output. Internally DC-blocked.	

Application Schematic High Impedance Output Configuration 850 MHz

[^0]
Application Schematic Buffered Output Configuration 850 MHz

RF2418

Evaluation Board Schematic $R F=850 \mathrm{MHz}, I F=71 \mathrm{MHz}$

(Download Bill of Materials from www.rfmd.com.)

Evaluation Board Layout Board Size 1.52" x 1.52"

Board Thickness 0.031", Board Material FR-4

RF2418

High Impedance Mixer Gain versus Voltage, RF=850MHz

High Impedance Mixer Input IP3 versus Voltage,

Buffered LNA Gain versus Voltage,

High Impedance Casc. Gain versus Voltage,

High Impedance Casc. Input IP3 versus Voltage,

Buffered Mixer Gain versus Voltage, RF=850MHz

Buffered LNA Noise Figure versus Voltage, RF=850MHz Part to Part Variation

Buffered LNA Input versus Voltage,

Buffered Casc. Input IP3 versus Voltage,

Buffered Mixer Noise Figure versus Voltage,

[^0]: L1 and C1 are picked to match the mixer's output impedance ($4 \mathrm{k} \Omega \mathrm{II} 10 \mathrm{pF}$) to the IF filter's impedance, at the IF frequency. C1 also serves as a DC block, in case the IF filter is not an open circuit at DC.

