SOTiny ${ }^{\text {TM }}$ Low Voltage Dual SPDT Analog Switch 2:1 Mux/DeMux Bus Switch

Features

- CMOS Technology for Bus and Analog Applications
- Low On-Resistance: 8Ω at 3.0 V
- Wide V_{CC} Range: 1.65 V to 5.5 V
- Rail-to-Rail Signal Range
- Control Input Overvoltage Tolerance: 5.5 V min.
- Fast Transition Speed: 5.2 ns max. at 5 V
- High Off Isolation: 57 dB at 10 MHz
- 54 dB (10 MHz) Crosstalk Rejection Reduces Signal Distortion
- Break-Before-Make Switching
- High Bandwidth: 250 MHz
- Extended Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Packaging (Pb-free \& Green available):
-12-contact TDFN (ZA)

Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Battery Powered Communications
- Computer Peripherals

Pin Description

Pin Number	Name	Description
8,11	$1_{1} \mathrm{~B}_{\mathrm{X}}$	Data port (Normally Open)
3,6	GND	Ground
2,5	${ }_{0} \mathrm{~B}_{\mathrm{X}}$	Data port (Normally Closed)
1,4	$\mathrm{~A}_{\mathrm{X}}$	Common Output/data port
9,12	$\mathrm{~V}_{\mathrm{CC}}$	Positive Power Supple
7,10	$\mathrm{~S}_{\mathrm{X}}$	Logic Controll

Notes:

1. $\mathrm{x}=0$ or 1

Logic Function Table

Logic Input(s)	Function
0	${ }_{0} \mathrm{~B}_{\mathrm{X}}$ Connection to A_{X}
1	${ }_{1} \mathrm{~B}_{\mathrm{X}}$ Connected to A_{X}

Description

The PI5A3158 is a dual high-bandwidth, fast single-pole doublethrow (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, 1.65 V to 5.5 V , the PI5A3158 has a maximum On-Resistance of 12Ω at $1.65 \mathrm{~V}, 9 \Omega$ at $2.3 \mathrm{~V} \& 6 \Omega$ at 4.5 V .

Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.
The control input, S , tolerates input drive signals up to 5.5 V , independent of supply voltage.

Connection Diagram

Absolute Maximum Ratings ${ }^{(1)}$
Supply Voltage V_{CC}

\qquad -0.5 V to +7 V
DC Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)^{(2)}$ \qquad -0.5 V to +7.0 V
DC Output Current ($\mathrm{V}_{\text {OUT }}$) \qquad 128 mA
DC V_{CC} or Ground Current $\left(\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}\right)$ $\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature under Bias (T_{J}) $.150^{\circ} \mathrm{C}$
Junction Lead Temperature (T_{L})
(Soldering, 10 seconds) $.260^{\circ} \mathrm{C}$
Power Dissipation $\left(\mathrm{P}_{\mathrm{D}}\right) @+85^{\circ} \mathrm{C}$ 180 mW

Notes:

1. Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.
2. The input and output negative voltage ratings may be exceeded if the inut and output diode current ratings are observed.
3. Control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics (Over the Operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)

DC Electrical Characteristics (Over the Operating temperature range, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$) (continued)

Parameters	Description	Test Conditions	Supply Voltage	Temp	Min.	Typ.	Max.	Units
$\Delta \mathrm{R}_{\mathrm{ON}}$	On-Resistance Match Between Channels ${ }^{(4,5,6)}$	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BN}}=3.15 \mathrm{~V}$	4.5 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.15		Ω
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BN}}=2.1 \mathrm{~V}$	3.0 V			0.2		
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BN}}=1.6 \mathrm{~V}$	2.3 V			0.3		
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BN}}=1.15 \mathrm{~V}$	1.65 V			0.3		
$\mathrm{R}_{\text {ONF }}$	On-Resistance Flatness ${ }^{(4,5,7)}$	$\mathrm{I}_{\mathrm{A}}=-30 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	5.0 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6		
		$\mathrm{I}_{\mathrm{A}}=-24 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	3.3 V			12		
		$\mathrm{I}_{\mathrm{A}}=-8 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	2.5 V			22		
		$\mathrm{I}_{\mathrm{A}}=-4 \mathrm{~mA}, 0 \leq \mathrm{V}_{\mathrm{BN}} \leq \mathrm{V}_{\mathrm{CC}}$	1.8 V			90		
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Logic High Level	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } \\ 1.95 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to } 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0.75 \\ & \mathrm{~V}_{\mathrm{CC}} \end{aligned}$			V
			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } \\ 5.5 \mathrm{~V} \end{gathered}$		$\begin{gathered} 0.7 \\ \mathrm{~V}_{\mathrm{CC}} \end{gathered}$			
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Logic LowLevel	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } \\ 1.95 \mathrm{~V} \end{gathered}$					
			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } \\ 5.5 \mathrm{~V} \end{gathered}$					
	Input Leakage Curent	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}} \leq 0 \mathrm{~V} \leq 5.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			± 0.1	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to } 85^{\circ} \mathrm{C} \end{aligned}$			± 1.0	
IOFF	OFF State Leakage Current	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 1.65 \mathrm{~V} \leq \\ & 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			± 0.1	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to } 85^{\circ} \mathrm{C} \end{aligned}$			± 10	
I_{CC}	Quiescent Supply Current	All Channels ON or OFF, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND, Iout $=0$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to } 85^{\circ} \mathrm{C} \end{aligned}$			20	

Notes:

4. Measured by voltage drop between A and B pins at the indicated current through the device. On-Resistance is determined by the lower of the voltages on two ports (A or B).
5. Parameter is characterized but not tested in production.
6. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}}$ min. measured at identical V_{CC}, temperature and voltage levels.
7. Flatness is defined as difference between maximum and minimum value of On-Resistance over the specified range of conditions.
8. Guaranteed by design.

Capacitance ${ }^{(12)}$

Parameters	Description	Test Conditions	Supply Voltage	Temp	Min.	Typ.	Max.	Units
$\mathrm{C}_{\text {IN }}$	Controll Input		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.3		pF
$\mathrm{C}_{\text {IO-B }}$	For B Port, Switch OFF	$\mathrm{f}=1 \mathrm{MHz}^{(12)}$				6.5		
CIOA-ON	For A Port, Switch ON					18.5		

Switch and AC Characteristics

Parameters	Description	Test Conditions	Supply Voltage	Temp	Min.	Typ.	Max.	Units
$t_{\text {tpLH }}$ tpHL	Propagation Delay: A to Bn	See test circut diagram 1 and 2 V_{I} Open ${ }^{(10)}$	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \& \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		1.2		
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V			0.8		
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V			0.3		
tPZL tpZH	Output Enable Turn ON Time: A to Bn	See test circut diagram 1 and 2 $\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\mathrm{CC}}$ for $t_{\text {PZL }}, V_{I}=0 V$ for tPZH	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	7		23	
			$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		3.5		13	
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		2.5		6.9	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		1.7		5.2	
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Turn ON Time: A to Bn	See test circut diagram 1 and 2 $\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\mathrm{CC}}$ for $t_{\text {PZL }}, V_{\mathrm{I}}=0 \mathrm{~V}$ for tPZH	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \& \\ & -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$			24	
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$				14	
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V				7.6	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V				5.7	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output DisableTurn OFF Time: A to Bn	See test circut diagram 1 and 2 $\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\mathrm{CC}}$ for $t_{\text {PZL }}, V_{I}=0 \mathrm{~V}$ for tPZH	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	3		12.5	
			$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		2		7	
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		1.5		5	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		0.8		3.5	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output DisableTurn OFF Time: A to Bn	See test circut diagram 1 and 2 $\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\mathrm{CC}}$ for $\mathrm{t}_{\mathrm{PZL}}, \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ for tPZH	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \& \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			13	
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$				7.5	
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V				5.3	
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V				3.8	
t_{BM}	Break Before Make Time	See Test Circut diagram 9. ${ }^{(9)}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \& \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	0.5			
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		0.5			
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		0.5			
			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		0.5			
Q	Charge Injection	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \text { See } \\ & \text { test circut } 4 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7		pC
			$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$			3		
OIRR	Off Isolation	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \text { See } \\ & \text { test circut } 5^{(11)} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-57		dB
$\mathrm{X}_{\text {TALK }}$	Crosstalk Isolation	See test circut 6	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-54		
$\mathrm{f}_{3 \mathrm{~dB}}$	-3dB Bandwidth	See test circut 9	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 5.5 V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		250		MHz

Notes:

9. Guaranteed by design.
10. Guaranteed by design but not production tested. The device contributes no other propagation delay other than the RC delay of the switch OnResistance and the 50 pF load capacitance, whe driven by an ideal voltage source with zero output impedance.
11. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{A}} / \mathrm{V}_{\mathrm{Bn}}\right]$ and is measured in dB .
12. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$. Capacitance is characterized but not tested in production.

Test Circuits and Timing Diagrams

Figure 1. AC Test Circuit

Figure 2. AC Waveforms

Figure 3. Break Before Make Interval Timing

Figure 4. Charge Injection Test

Figure 5. Off Isolation

Figure 7. Channel Off Capacitance

Figure 6. Crosstalk

Figure 8. Channel On Capacitance

Figure 9. Bandwidth

Packaging Mechanical : 12-contact TDFN (ZA)

Ordering Information

Ordering Code	Packaging Code	Package Type
PI5A3158ZA ${ }^{(1)}$	ZA	12-contact TDFN
PI5A3158ZAE	ZA	Pb-free \& Green, 12-contact TDFN

Notes:

1. This product has always shipped as only a lead free product, but since it was introduced prior to Pericom's strategy of adding an E to all Green/ Lead free parts many customers order it without the E suffix. Please migrate new designs and qualification to include the E suffix. Pericom at this point in time will continue to offer devices marked both ways, but may at a later date eliminate the non-E part number.
2. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
