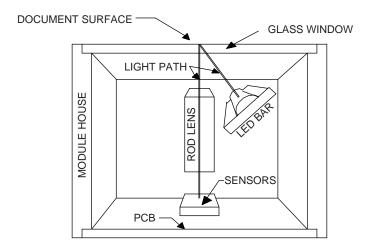


PI317MC-A6 300DPI CIS Module Engineering Data Sheet

Key Features

- Light source, lens, and sensor are integrated into a single module
- 11.8 dpm resolution, 104 mm scanning length
- Up to 250 μsec/line scanning speed, with 5MHz pixel rate
- Wide dynamic range
- Analog output
- Yellow-green LED light source
- Low power
- Light weight

General Description


The PI317MC-A6 is a contact imaging sensor, CIS, module, which is composed of 13 PI3021 sensor chips. The PI3021 is a 300 DPI solid-state line imaging array, also a product of Peripheral Imaging Corporation. This imaging device is fabricated using MOS imaging sensor technology for high-speed performance and high sensitivity. The PI317MC-A6 is suitable for scanning A6 size (104 mm) documents with 11.8 dots per millimeter resolution. Applications include ticket, check and card scanners, variety of mark readers, and other automation equipment.

Functional Description

The PI317MC-A6 imaging array consists of 13 sensors that are cascaded to provide 1248 photo-detectors with their associated multiplex switches, and a digital shift register that controls its sequential readout. Mounted in the module is one-to-one graded indexed

micro lens array that focuses the scanned documents to image onto its sensing plane. The on-board amplifier processes the video signal to produce a sequential stream of video at the video output pin of the PI317MC-A6 module.

Illumination is by means of an integrated LED light source. All components are housed in a small plastic housing which has a cover glass which acts as the focal point for the object being scanned and protects the imaging array, micro lens assembly, and LED light source from dust. I/O to the module is the 10-pin connector located on one end of the module. The cross section of the PI317MC-A6 is shown in Figure 1 and the block diagram in Figure 2.

INSIDE PICTORIAL OF MODULE

Figure 1. PI317MC-A6 Cross Section

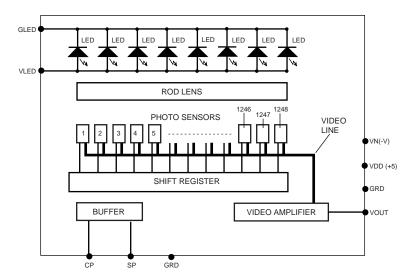


Figure 2. PI317MC-A6 module block diagram. (See Table 1 below)

Pin Number	Symbol	Names and Functions
1	Vout	Analog Video Output
2	Gnd	Ground; 0V
3	Vdd (+5V)	Positive power supply
4	Vn (-5V to -12V)	Negative power supply
5	Gnd	Ground; 0V
6	SP	Shift register start pulse
7	Gnd	Ground; 0V
8	CP	Sampling clock pulse
9	GLED	Ground for the light source; 0V
10	VLED	Supply for the light source

Table 1. Pin configuration

Absolute Maximum Rating:

Parameter	Symbols Maximum Rati		Units
Power supply voltage	Vdd	10	V
	ldd	50	ma
	Vn	-15	V
	In	10	ma
	VLED	5.5	V
	ILED	500	ma
Input clock pulse (high level)	Vih	Vdd - 0.5V	V
Input clock pulse (low level)	Vil	-0.6	V

Operating Environment

Operating temperature	Тор	0 to 50	℃
Operating humidity	Нор	10 to 85	%
Storage temperature	Tstg	-25 to+75	℃
Storage humidity	Hstg	5 to 95	%

Electro-Optical Characteristics (25° C)

Table 2. Electro-optical characteristics at 25° C.

Parameter	Symbol	Parameter	Units	Note
Number of photo detectors		1248	elements	
Pixel to pixel spacing		84.7	μm	

Line scanning rate	Tint ⁽¹⁾	250	μsec	@ 5.0 MHz clock frequency
Clock frequency (2)	f	5.0	MHz	
Bright output voltage (3)	Video Output	1.0 +/-0.1	V	
Bright output	Up	<+/-30	%	
nonuniformity (4)				
Adjacent pixel	Uadj	<25	%	
nonuniformity (5)				
Dark nonuniformity (6)	Ud	<100	mV	
Dark output voltage	Vd	<450	mV	
Modulation transfer function (7)	MTF	>40	%	
TUTICUOTI				

Definition:

- (1) Tint: Line scanning rate or integration time. Tint is determined by the interval of two SP, start pulses.
- (2) f: main clock frequency,
- (3) Vpavg = $\sum Vp(n)/1248$; where n=1, 2, 3...., 1248
- (4) Up = [(Vpmax Vpavg) / Vpavg] x 100% or [(Vpavg Vpmin) / Vpavg] x 100% where Vpmax = the maximum V(n) and Vpmin = the minimum V(n)
- (5) Upadj = MAX[| $(Vp(n) Vp(n+l) | / Vp(n)] \times 100\%$

Upadj is the nonuniformity percentage pixel to pixel

(6) Ud = Vdmax - Vdmin

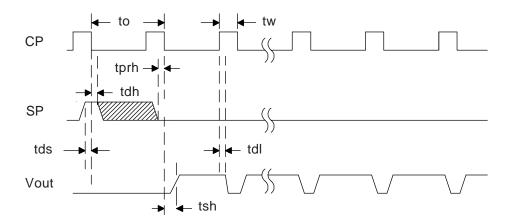
Vdmin is the minimum output voltage, LED off.

Vdmax is the maximum output voltage, LED off.

(7) MTF = [(Vpmax - Vpmin) / (Vpmax + Vpmin)] x 100[%]; tested on a 75 lp/inch target.

Vpmax: maximum output voltage Vpmin: minimum output voltage

Ip / inch: line pair/inch

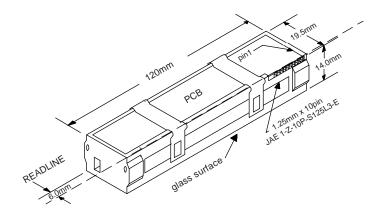

Recommended Operating Conditions (25 °C)

Item	Symbol	Min	Mean	Max	Units
Power Supply	Vdd	4.5	5.0	5.5	V
	Vn.	-4.5	-5	-12	V
	VLED		5		V
	ldd		47	55	ma
	lvn		6.0	10.0	ma
	ILED		450	500	ma
Input voltage at digital high	Vih	Vdd-1.0	Vdd5	Vdd	٧
Input voltage at digital low	Vil	0		0.8	V
Clock frequency	f			5.0	MHz
Clock pulse high duty cycle		25			%

Clock pulse high duration		50			ns
Integration time	Tint	0.25		5.0	ms
Operating temperature	Тор		25	50	°C

^{*} Tint (Min) is the lowest line integration time available with 5.0 MHz clock rate.

Switching Characteristics (25°C)


MODULE TIMING DIAGRAM

The switching characteristics for the I/O clocks are shown in the above timing diagrams. See timing symbol definitions in the following table.

Item	Symbol	Min.	Typical	Max.	Units
Clock cycle time	to	0.20		4.0	μs
Clock pulse width	tw	50			ns
Clock duty cycle		25		75	%
Prohibit crossing time	tprh	15			ns
of Start Pulse					
Data setup time	tds	20			ns
Data hold time	tdh	20			ns
Signal delay time	tdl	50			ns
Signal settling time	tsh	120			ns

Symbol Definitions for the Above Timing Diagram

PI317MC-A6 Module and Its Mechanical Dimensions

Pictorial of the Plastic A6 Housing Size

The sketch of this module is to provide a pictorial of the module size and structure. A detailed drawing is available upon request.

©2001 Peripheral Imaging Corporation. Printed in USA. All rights reserved. Specifications are subject to change without notice. Contents may not be reproduced in whole or in part without the express prior written permission of Peripheral Imaging Corporation. Information furnished herein is believed to be accurate and reliable. However, no responsibility is assumed by Peripheral Imaging Corporation for its use nor for any infringement of patents or other rights granted by implication or otherwise under any patent or patent rights of Peripheral Imaging Corporation.