FETKYTM

P-Channel Enhancement-Mode **Power MOSFET and Schottky Diode Dual SO-8 Package**

Features

- High Efficiency Components in a Single SO-8 Package
- High Density Power MOSFET with Low R_{DS(on)}, Schottky Diode with Low V_F
- Independent Pin-Outs for MOSFET and Schottky Die Allowing for Flexibility in Application Use
- Less Component Placement for Board Space Savings
- SO-8 Surface Mount Package. Mounting Information for SO-8 Package Provided
- Pb-Free Package is Available

Applications

- DC-DC Converters
- Low Voltage Motor Control
- Power Management in Portable and Battery-Powered Products, i.e.: Computers, Printers, PCMCIA Cards, Cellular and Cordless Telephones

MOSFET MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

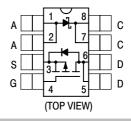
Rating	Symbol	Value	Unit	
Drain-to-Source Voltage	V_{DSS}	-30	V	
Gate-to-Source Voltage - Continuous	V_{GS}	±20	V	
Thermal Resistance – Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _{DM}	171 0.73 -2.34 -1.87 -8.0	°C/W W A A	
Thermal Resistance – Junction-to-Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C Pulsed Drain Current (Note 4)	R _{θJA} P _D I _D I _D	100 1.25 -3.05 -2.44 -12	°C/W W A A	
Thermal Resistance – Junction–to–Ambient (Note 3) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 70°C Pulsed Drain Current (Note 4)	R _{0JA} P _D I _D I _D	62.5 2.0 -3.86 -3.10 -15	°C/W W A A	
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C	
Single Pulse Drain-to-Source Avalanche Energy – Starting $T_J = 25^{\circ}C$ ($V_{DD} = -30$ Vdc, $V_{GS} = -4.5$ Vdc, Peak $I_L = -7.5$ Apk, $L = 5$ mH, $R_G = 25$ Ω)	E _{AS}	140	mJ	
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Minimum FR-4 or G-10 PCB, Steady State.

- Mounted onto a 2" square FR-4 Board (1in sq, 2 oz Cu 0.06" thick single sided), Steady State.
- Mounted onto a 2" square FR-4 Board (1 in sq, 2 oz Cu 0.06'' thick single sided), $t \le 10$ seconds.
- 4. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.

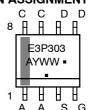
ON Semiconductor®


http://onsemi.com

MOSFET -3.05 AMPERES -30 VOLTS

0.085 Ω @ V_{GS} = -10 V

SCHOTTKY DIODE 3.0 AMPERES 30 VOLTS


420 mV @ I_F = 3.0 A

MARKING DIAGRAM & PIN ASSIGNMENT

SO-8**CASE 751** STYLE 18

E3P303 = Device Code

= Assembly Location = Year WW = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMSD3P303R2	SO-8	2500/Tape & Reel
NTMSD3P303R2G	SO-8 (Pb-Free)	2500/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SCHOTTKY MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V_{RRM}	30	V
DC Blocking Voltage	V_{R}		
Thermal Resistance – Junction-to-Ambient (Note 5)	$R_{\theta JA}$	197	°C/W
Thermal Resistance – Junction-to-Ambient (Note 6)	$R_{\theta JA}$	97	°C/W
Thermal Resistance – Junction-to-Ambient (Note 7)	$R_{\theta JA}$	62.5	°C/W
Average Forward Current (Note 7) (Rated V _R , T _A = 100°C)	Io	3.0	Α
Peak Repetitive Forward Current (Note 7) (Rated V _R , Square Wave, 20 kHz, T _A = 105°C)	I _{FRM}	6.0	Α
Non-Repetitive Peak Surge Current (Note 7) (Surge Applied at Rated Load Conditions, Half-Wave, Single Phase, 60 Hz)	I _{FSM}	30	Α

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 5. Minimum FR-4 or G-10 PCB, Steady State.
- 6. Mounted onto a 2" square FR-4 Board (1 in sq, 2 oz Cu 0.06" thick single sided), Steady State.
 7. Mounted onto a 2" square FR-4 Board (1 in sq, 2 oz Cu 0.06" thick single sided), t ≤ 10 seconds.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (Note 8)

Char	racteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = -250 μAdc) Temperature Coefficient (Positive)		V _{(BR)DSS}	-30 -	- -30	_ _	Vdc mV/°C
Zero Gate Voltage Drain Current $ \begin{array}{l} (V_{DS}=-30 \text{ Vdc, } V_{GS}=0 \text{ Vdc, } T_J=25^{\circ}\text{C}) \\ (V_{DS}=-30 \text{ Vdc, } V_{GS}=0 \text{ Vdc, } T_J=125^{\circ}\text{C}) \end{array} $			- -	- -	-1.0 -25	μAdc
Gate-Body Leakage Current (V _{GS} = -20 Vdc, V _{DS} = 0 Vdc)			-	-	-100	nAdc
Gate-Body Leakage Current (V _{GS} = +20 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	_	-	100	nAdc
ON CHARACTERISTICS	ON CHARACTERISTICS					
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = -250 \mu Adc)$ Temperature Coefficient (Negative)		V _{GS(th)}	-1.0 -	-1.7 3.6	-2.5 -	Vdc
Static Drain-to-Source On-State Resistance ($V_{GS} = -10$ Vdc, $I_D = -3.05$ Adc) ($V_{GS} = -4.5$ Vdc, $I_D = -1.5$ Adc)			- -	0.063 0.090	0.085 0.125	Ω
Forward Transconductance (V _{DS} = -15 Vdc, I _D = -3.05 Adc)	9FS	-	5.0	-	Mhos	
DYNAMIC CHARACTERISTICS						
Input Capacitance	(V _{DS} = −24 Vdc,	C _{iss}	-	520	750	pF
Output Capacitance	V _{GS} = 0 Vdc,	C _{oss}	-	170	325	
Reverse Transfer Capacitance	f = 1.0 MHz)	C _{rss}	-	70	135	

^{8.} Handling precautions to protect against electrostatic discharge are mandatory.

MOSFET ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (Note 9)

Characteristic			Min	Тур	Max	Unit
SWITCHING CHARACTERISTIC	S (Notes 10 & 11)		•	•	•	•
Turn-On Delay Time		t _{d(on)}	_	12	22	ns
Rise Time	$(V_{DD} = -24 \text{ Vdc}, $ $I_{D} = -3.05 \text{ Adc},$	t _r	-	16	30	
Turn-Off Delay Time	$V_{GS} = -10 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$	t _{d(off)}	-	45	80	
Fall Time	ng = 0.0 s2)	t _f	-	45	80	
Turn-On Delay Time		t _{d(on)}	-	16	-	ns
Rise Time	(V _{DD} = -24 Vdc, I _D = -1.5 Adc,	t _r	-	42	-	
Turn-Off Delay Time	$V_{GS}^{CS} = -4.5 \text{ Vdc},$ $R_{G} = 6.0 \Omega)$	t _{d(off)}	-	32	-	
Fall Time	11G - 0.0 sz)	t _f	-	35	-	
Total Gate Charge	(V _{DS} = -24 Vdc,	Q _{tot}	-	16	25	nC
Gate-Source Charge	$V_{GS} = -10 \text{ Vdc},$	Q _{gs}	-	2.0	-	
Gate-Drain Charge	I _D = -3.05 Adc)	Q _{gd}	-	4.5	-	
BODY-DRAIN DIODE RATINGS	(Note 10)					
Diode Forward On-Voltage	$(I_S = -3.05 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = -3.05 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V _{SD}	<u> </u>	-0.96 -0.78	-1.25 -	Vdc
Reverse Recovery Time	$(I_S = -3.05 \text{ Adc},$	t _{rr}	-	34	-	ns
	$V_{GS} = 0 \text{ Vdc},$	t _a	-	18	-	
	$dI_S/dt = 100 \text{ A/ } \mu\text{s})$	t _b	-	16	-	1
Reverse Recovery Stored Charge		Qpp	_	0.03	_	иC

^{9.} Handling precautions to protect against electrostatic discharge is mandatory. 10. Indicates Pulse Test: Pulse Width = 300 μ s max, Duty Cycle = 2%.

SCHOTTKY RECTIFIER ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (Note 12)

Maximum Instantaneous Forward Voltage		V _F	T _J = 25°C	T _J = 125°C	Volts
	$\begin{array}{c} I_F = 100 \text{ mAdc} \\ I_F = 3.0 \text{ Adc} \\ I_F = 6.0 \text{ Adc} \end{array}$		0.28 0.42 0.50	0.13 0.33 0.45	Volts
Maximum Instantaneous Reverse Current	.,	I _R	T _J = 25°C	T _J = 125°C	
	V _R = 30 Vdc		250	25	μA mA
Maximum Voltage Rate of Change	V _R = 30 Vdc	dV/dt	10,000		V/μs

^{12.} Indicates Pulse Test: Pulse Width = 300 μs max, Duty Cycle = 2%.

^{11.} Switching characteristics are independent of operating junction temperature.

TYPICAL MOSFET ELECTRICAL CHARACTERISTICS

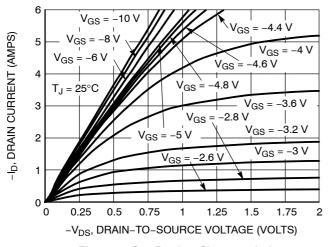


Figure 1. On-Region Characteristics

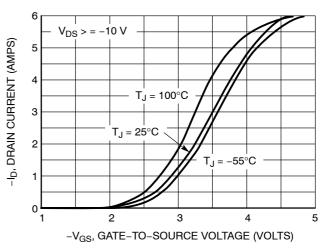


Figure 2. Transfer Characteristics

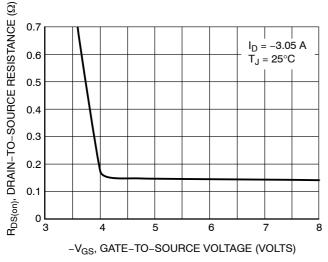


Figure 3. On-Resistance vs. Gate-to-Source Voltage

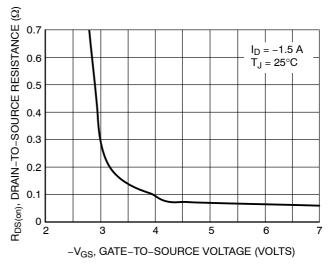


Figure 4. On-Resistance vs. Gate-to-Source Voltage

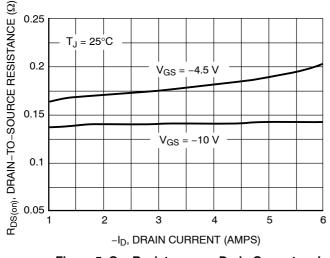


Figure 5. On-Resistance vs. Drain Current and Gate Voltage

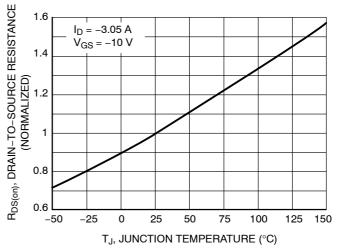
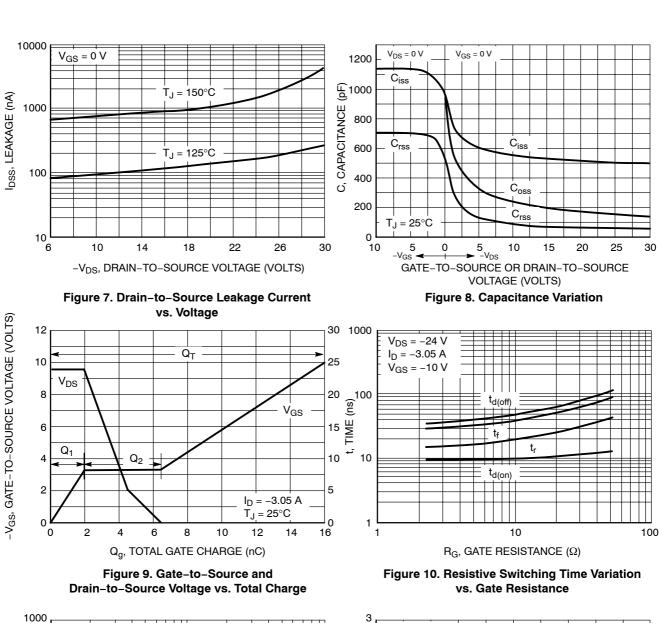



Figure 6. On Resistance Variation with Temperature

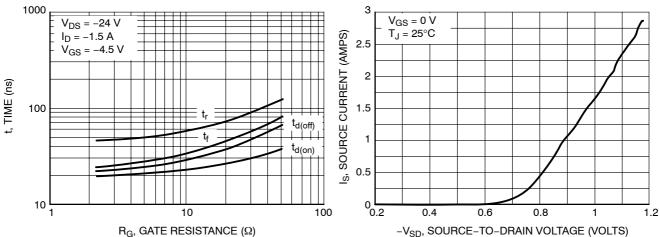
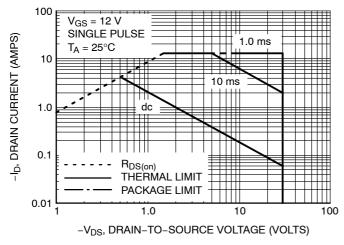



Figure 11. Resistive Switching Time Variation vs. Gate Resistance

Figure 12. Diode Forward Voltage vs. Current

 $\begin{array}{c|c} & & & \\ &$

Figure 13. Maximum Rated Forward Biased Safe Operating Area

Figure 14. Diode Reverse Recovery Waveform

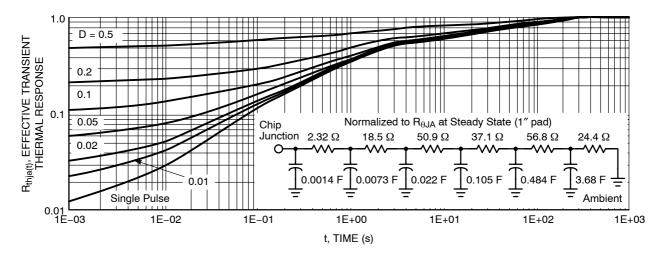


Figure 15. FET Thermal Response

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

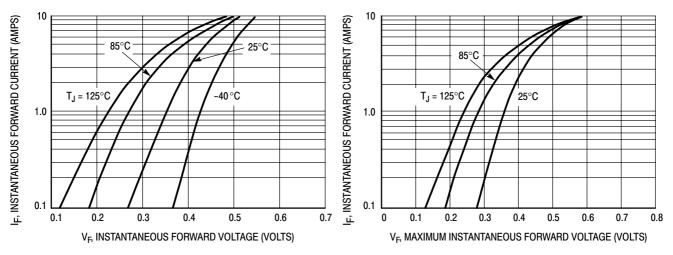
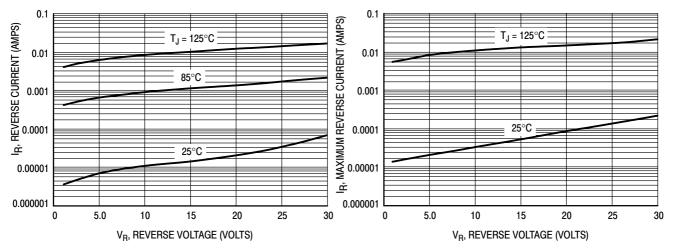



Figure 16. Typical Forward Voltage

Figure 17. Maximum Forward Voltage

Figure 18. Typical Reverse Current

Figure 19. Maximum Reverse Current

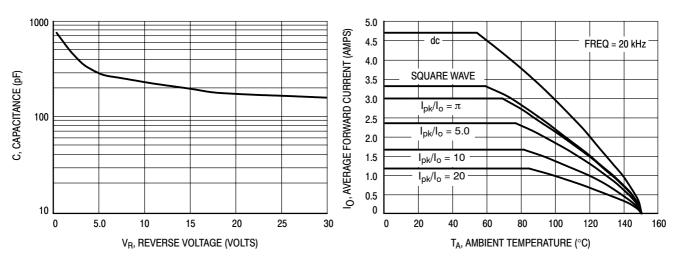


Figure 20. Typical Capacitance

Figure 21. Current Derating

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

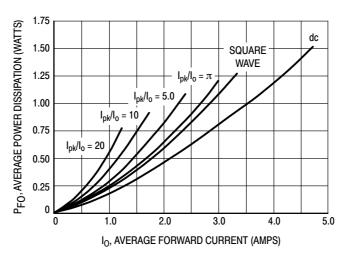
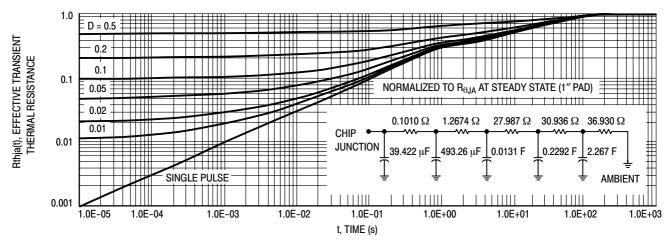
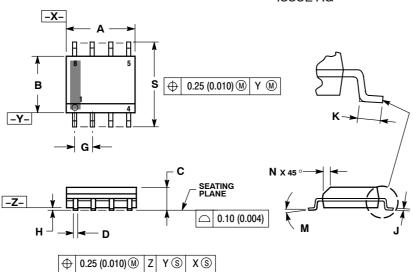
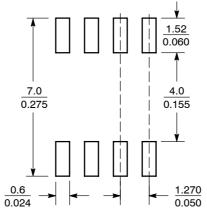


Figure 22. Forward Power Dissipation


Figure 23. Schottky Thermal Response

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 ISSUE AG

SOLDERING FOOTPRINT*

SCALE 6:1 $\left(\frac{\text{mm}}{\text{inches}}\right)$

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

FETKY is a trademark of International Rectifier Corporation.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A AND B DO NOT INCLUDE
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAYIMI M MATERIAL CONDITION
- MAXIMUM MATERIAL CONDITION.
 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	1.27 BSC		0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

STYLE 18:

- PIN 1. ANODE
 - ANODE
 - SOURCE
 GATE
 - 5. DRAIN
 - 6. DRAIN
 - 7. CATHODE
 - 8. CATHODE