2.5V/3.3V SiGe 1:2 Differential Clock Driver with RSECL* Outputs # *Reduced Swing ECL The NBSG11 is a 1-to-2 differential fanout buffer, optimized for low skew and Ultra-Low JITTER. Inputs incorporate internal 50 Ω termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), CML, LVCMOS, LVTTL, or LVDS. Outputs are RSECL (Reduced Swing ECL), 400 mV. #### **Features** - Maximum Input Clock Frequency up to 12 GHz Typical - Maximum Input Data Rate up to 12 Gb/s Typical - 30 ps Typical Rise and Fall Times - 125 ps Typical Propagation Delay - RSPECL Output with Operating Range: $V_{CC} = 2.375 \text{ V}$ to 3.465 V with $V_{EE} = 0 \text{ V}$ - RSNECL Output with RSNECL or NECL Inputs with Operating Range: V_{CC} = 0 V with V_{EE} = −2.375 V to −3.465 V - RSECL Output Level (400 mV Peak-to-Peak Output), Differential Output Only - 50 Ω Internal Input Termination Resistors - Compatible with Existing 2.5 V/3.3 V LVEP, EP, and LVEL Devices 1 • Pb-Free Packages are Available #### ON Semiconductor® http://onsemi.com #### **MARKING DIAGRAMS*** FCBGA-16 BA SUFFIX CASE 489 QFN-16 MN SUFFIX CASE 485G A = Assembly Location L = Wafer Lot Y = Year W = Work Week = Pb–Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. Figure 1. BGA-16 Pinout (Top View) Figure 2. QFN-16 Pinout (Top View) #### **Table 1. PIN DESCRIPTION** | Pin | | | | | |-----------------|-----------|-----------------|---|--| | BGA | QFN | Name | I/O | Description | | D1 | 1 | VTCLK | - | Internal 50 Ω Termination Pin. See Table 2. | | C1 | 2 | CLK | ECL, CML,
LVCMOS, LVDS,
LVTTL Input | Inverted Differential Input. Internal 75 k Ω to V_{EE} and 36.5 k Ω to $V_{CC}.$ | | B1 | 3 | CLK | ECL, CML,
LVCMOS, LVDS,
LVTTL Input | Noninverted Differential Input. Internal 75 k Ω to V _{EE} . | | A1 | 4 | VTCLK | - | Internal 50 Ω Termination Pin. See Table 2. | | B2,C2 | 5,16 | V _{EE} | - | Negative Supply Voltage | | A2,A3,D2,
D3 | 6,7,14,15 | NC | - | No Connect | | B3,C3 | 8,13 | V _{CC} | - | Positive Supply Voltage | | A4 | 9 | Q1 | RSECL Output | Inverted Differential Output 1. Typically Terminated with 50 Ω to V_{TT} = V_{CC} – 2.0 V. | | B4 | 10 | Q1 | RSECL Output | Noninverted Differential Output 1. Typically Terminated with 50 Ω to V _{TT} = V _{CC} $-$ 2.0 V. | | C4 | 11 | Q0 | RSECL Output | Inverted Differential output 0. Typically Terminated with 50 Ω to V_{TT} = V_{CC} – 2.0 V. | | D4 | 12 | Q0 | RSECL Output | Noninverted Differential Output 0. Typically Terminated with 50 Ω to V_{TT} = V_{CC} – 2 V . | | N/A | _ | EP | _ | Exposed Pad (Note 2) | - 1. The NC pins are electrically connected to the die and must be left open. - 2. All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation. The thermally exposed pad on package bottom (see case drawing) must be attached to a heat–sinking conduit. In the differential configuration when the input termination pins (VTCLK, VTCLK) are connected to a common termination voltage, and - if no signal is applied then the device will be susceptible to self-oscillation. Figure 3. Logic Diagram ## **Table 2. INTERFACING OPTIONS** | INTERFACING OPTIONS | CONNECTIONS | |---------------------|--| | CML | Connect VTCLK and VTCLK to V _{CC} | | LVDS | Connect VTCLK and VTCLK together | | AC-COUPLED | Bias VTCLK and VTCLK Inputs within (VIHCMR) Common Mode Range | | RSECL, PECL, NECL | Standard ECL Termination Techniques | | LVTTL, LVCMOS | An external voltage should be be applied to the unused complementary differential input. Nominal voltage is 1.5 V for LVTTL and V _{CC} /2 for LVCMOS inputs. | #### **Table 3. ATTRIBUTES** | Characterist | Characteristics | | | | | | |--|------------------------|----------------------|----------------|--|--|--| | Internal Input Pulldown Resistor (CLK | 75 kΩ | | | | | | | Internal Input Pullup Resistor (CLK) | 36.5 | i kΩ | | | | | | ESD Protection | > 2 kV
> 100 V | | | | | | | Moisture Sensitivity (Note 4) | Pb Pkg | Pb-Free Pkg | | | | | | | FCBGA-16
QFN-16 | Level 3
Level 1 | N/A
Level 1 | | | | | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | | | | | Transistor Count | 125 | | | | | | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | | | | | | | ^{4.} For additional information, see Application Note AND8003/D. **Table 4. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|---|--|--|---|----------------------| | V _{CC} | Positive Power Supply | V _{EE} = 0 V | | 3.6 | V | | V _{EE} | Negative Power Supply | V _{CC} = 0 V | | -3.6 | V | | VI | Positive Input
Negative Input | V _{EE} = 0 V
V _{CC} = 0 V | $\begin{aligned} &V_{I} \leq V_{CC} \\ &V_{I} \geq V_{EE} \end{aligned}$ | 3.6
-3.6 | V
V | | V _{INPP} | Differential Input Voltage $ D - \overline{D} $ | $\begin{array}{ccc} V_{CC} - V_{EE} \geq & 2.8 \ V \\ V_{CC} - V_{EE} < & 2.8 \ V \end{array}$ | | 2.8
 V _{CC} – V _{EE} | V
V | | l _{out} | Output Current | Continuous
Surge | | 25
50 | mA
mA | | T _A | Operating Temperature Range | 16 FCBGA
16 QFN | | -40 to +70
-40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | θЈΑ | Thermal Resistance (Junction–to–Ambient) (Note 5) | 0 Ifpm
500 Ifpm
0 Ifpm
500 Ifpm | 16 FCBGA
16 FCBGA
16 QFN
16 QFN | 108
86
41.6
35.2 | °C/W
°C/W
°C/W | | θ _{JC} | Thermal Resistance (Junction-to-Case) | 1S2P (Note 5)
2S2P (Note 6) | 16 FCBGA
16 QFN | 5.0
4.0 | °C/W
°C/W | | T _{sol} | Wave Solder Pb Pb-Free | | | 225
225 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 5. JEDEC standard multilayer board – 1S2P (1 signal, 2 power). 6. JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad. Table 5. DC CHARACTERISTICS, INPUT WITH RSPECL OUTPUT V_{CC} = 2.5 V; V_{EE} = 0 V (Note 7) | | | -40°C | | | | 25°C | | 70°C(B | (QFN)** | | | |--------------------|--|---------------------------------|----------------------------------|-----------------------------|---------------------------------|----------------------------------|--------------------------------|---------------------------------|----------------------------------|--------------------------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Negative Power Supply Current | 45 | 60 | 75 | 45 | 60 | 75 | 45 | 60 | 75 | mA | | V _{OH} | Output HIGH Voltage (Note 8) | 1450 | 1530 | 1575 | 1525 | 1565 | 1600 | 1550 | 1590 | 1625 | mV | | V _{OUTPP} | Output Amplitude Voltage | 350 | 410 | 525 | 350 | 410 | 525 | 350 | 410 | 525 | mV | | V _{IH} | Input HIGH Voltage (Single-Ended)
(Note 10) | V _{CC} -
1435
mV | V _{CC} -
1000
mV* | V _{CC} | V _{CC} -
1435
mV | V _{CC} -
1000
mV* | V _{CC} | V _{CC} -
1435
mV | V _{CC} -
1000
mV* | V _{CC} | V | | V _{IL} | Input LOW Voltage (Single–Ended)
(Note 11) | V _{IH} -
2.5 V | V _{CC} -
1400
mV* | V _{IH} −
150 mV | V _{IH} -
2.5 V | V _{CC} -
1400
mV* | V _{IH} -
150
mV | V _{IH} -
2.5 V | V _{CC} -
1400
mV* | V _{IH} -
150
mV | V | | V _{IHCMR} | Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 9) | 1.2 | | 2.5 | 1.2 | | 2.5 | 1.2 | | 2.5 | V | | R _{TIN} | Internal Input Termination Resistor | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | Ω | | I _{IH} | Input HIGH Current (@ V _{IH} , V _{IHMAX}) | | 80 | 150 | | 80 | 150 | | 80 | 150 | μΑ | | I _{IL} | Input LOW Current (@ V _{IL} , V _{ILMIN}) | | 25 | 100 | | 25 | 100 | | 25 | 100 | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. ^{*}Typicals used for testing purposes. ^{**}The device packaged in FCBGA-16 have maximum temperature specification of 70°C and devices packaged in QFN-16 have maximum temperature specification of 85°C. ^{7.} Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.125 V to -0.965 V. 8. All loading with 50 Ω to V_{CC} - 2.0 V. V_{OH}/V_{OL} measured at V_{IH}/V_{IL}. ^{9.} V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. ^{10.} V_{IH} cannot exceed V_{CC}. ^{11.} V_{IL} always ≥ V_{EE}. Table 6. DC CHARACTERISTICS, INPUT WITH RSPECL OUTPUT $V_{CC} = 3.3 \text{ V}$; $V_{EE} = 0 \text{ V}$ (Note 12) | | | −40°C | | | 25°C | | | 70°C(B | | | | |--------------------|---|---------------------------------|----------------------------------|--------------------------------|---------------------------------|----------------------------------|--------------------------------|---------------------------------|----------------------------------|--------------------------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Negative Power Supply Current | 45 | 60 | 75 | 45 | 60 | 75 | 45 | 60 | 75 | mA | | V _{OH} | Output HIGH Voltage (Note 13) | 2250 | 2330 | 2375 | 2325 | 2365 | 2400 | 2350 | 2390 | 2425 | mV | | V _{OUTPP} | Output Amplitude Voltage | 350 | 410 | 525 | 350 | 410 | 525 | 350 | 410 | 525 | mV | | V _{IH} | Input HIGH Voltage (Single–Ended)
(Note 15) | V _{CC} -
1435
mV | V _{CC} -
1000
mV* | V _{CC} | V _{CC} -
1435
mV | V _{CC} -
1000
mV* | V _{CC} | V _{CC} -
1435
mV | V _{CC} -
1000
mV* | V _{CC} | V | | V _{IL} | Input LOW Voltage (Single–Ended)
(Note 16) | V _{IH} -
2.5 V | V _{CC} -
1400
mV* | V _{IH} -
150
mV | V _{IH} -
2.5 V | V _{CC} -
1400
mV* | V _{IH} -
150
mV | V _{IH} -
2.5 V | V _{CC} -
1400
mV* | V _{IH} -
150
mV | V | | VIHCMR | Input HIGH Voltage Common Mode
Range (Note 14)
(Differential Configuration) | 1.2 | | 3.3 | 1.2 | | 3.3 | 1.2 | | 3.3 | V | | R _{TIN} | Internal Input Termination Resistor | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | Ω | | I _{IH} | Input HIGH Current (@ V _{IH} , V _{IHMAX}) | | 80 | 150 | | 80 | 150 | | 80 | 150 | μΑ | | I _{IL} | Input LOW Current (@ V _{IL} , V _{ILMIN}) | | 25 | 100 | | 25 | 100 | | 25 | 100 | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. ^{12.} Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.925 V to -0.165 V. 13. All loading with 50 Ω to V_{CC} - 2.0 V. V_{OH}/V_{OL} measured at V_{IH}/V_{IL} . 14. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal. ^{15.} V_{IH} cannot exceed V_{CC}. ^{16.} V_{IL} always ≥ V_{EE}. *Typicals used for testing purposes. ^{**}The device packaged in FCBGA-16 have maximum temperature specification of 70°C and devices packaged in QFN-16 have maximum temperature specification of 85°C. #### Table 7. DC CHARACTERISTICS, NECL OR RSNECL INPUT WITH NECL OUTPUT $V_{CC} = 0 \text{ V}; V_{EE} = -3.465 \text{ V to } -2.375 \text{ V (Note 17)}$ | | | -40°C | | | | 25°C | | 70°C(B | (QFN)** | | | |--------------------|---|---------------------------------|----------------------------------|--------------------------------|---------------------------------|----------------------------------|--------------------------------|---------------------------------|----------------------------------|--------------------------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | I _{EE} | Negative Power Supply Current | 45 | 60 | 75 | 45 | 60 | 75 | 45 | 60 | 75 | mA | | VOH | Output HIGH Voltage (Note 18) | -1050 | -970 | -925 | -975 | -935 | -900 | -950 | -910 | -875 | mV | | V _{OUTPP} | Output Amplitude Voltage | 350 | 410 | 525 | 350 | 410 | 525 | 350 | 410 | 525 | mV | | V _{IH} | Input HIGH Voltage (Single–Ended)
(Note 20) | V _{CC} -
1435
mV | V _{CC} -
1000
mV* | V _{CC} | V _{CC} -
1435
mV | V _{CC} -
1000
mV* | V _{CC} | V _{CC} -
1435
mV | V _{CC} -
1000
mV* | V _{CC} | V | | V _{IL} | Input LOW Voltage (Single-Ended) (Note 21) | V _{IH} -
2.5 V | V _{CC} -
1400
mV* | V _{IH} -
150
mV | V _{IH} -
2.5 V | V _{CC} -
1400
mV* | V _{IH} -
150
mV | V _{IH} -
2.5 V | V _{CC} -
1400
mV* | V _{IH} -
150
mV | V | | V _{IHCMR} | Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 19) | V _{EE} - | - 1.2 | 0.0 | V _{EE} | +1.2 | 0.0 | V _{EE} | +1.2 | 0.0 | V | | R _{TIN} | Internal Input Termination Resistor | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | Ω | | I _{IH} | Input HIGH Current (@ VIH, VIHMAX) | | 80 | 150 | | 80 | 150 | | 80 | 150 | μΑ | | I _{IL} | Input LOW Current (@ V _{IL} , V _{ILMIN}) | | 25 | 100 | | 25 | 100 | | 25 | 100 | μΑ | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. ^{17.} Input and output parameters vary 1:1 with V_{CC}. ^{18.} All loading with 50 Ω to V_{CC} – 2.0 V. V_{OH}/V_{OL} measured at V_{IH}/V_{IL} . 19. V_{IHCMR} min varies 1:1 with V_{EE} , V_{IHCMR} max varies 1:1 with V_{CC} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal. ^{20.} VIH cannot exceed VCC. ^{21.} V_{IL} always ≥ V_{EE}. *Typicals used for testing purposes. **The device packaged in FCBGA–16 have maximum temperature specification of 70°C and devices packaged in QFN–16 have maximum temperature specification of 85°C. #### Table 8. AC CHARACTERISTICS for FCBGA-16 $V_{CC} = 0 \text{ V}$; $V_{EE} = -3.465 \text{ V}$ to -2.375 V or $V_{CC} = 2.375 \text{ V}$ to 3.465 V; $V_{EE} = 0 \text{ V}$ | | | | –40°C | | | 25°C | | | 70°C | | | |--|--|--------|--------------|----------------|--------|--------------|----------------|--------|--------------|----------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Frequency
(See Figure 4. F _{max} /JITTER) (Note 22) | 10.709 | 12 | | 10.709 | 12 | | 10.709 | 12 | | GHz | | t _{PLH} ,
t _{PHL} | Propagation Delay to
Output Differential | 90 | 125 | 160 | 90 | 125 | 160 | 90 | 125 | 160 | ps | | t _{SKEW} | Duty Cycle Skew (Note 23)
Within–Device Skew (Note 24)
Device–to–Device Skew (Note 25) | | 3
6
25 | 15
15
50 | | 3
6
25 | 15
15
50 | | 3
6
25 | 15
15
50 | ps | | ^t JITTER | RMS Random Clock Jitter f _{in} < 10 GHz Peak-to-Peak Data Dependent Jitter f _{in} < 10 Gb/s | | 0.2
TBD | 1 | | 0.2
TBD | 1 | | 0.2
TBD | 1 | ps | | V _{INPP} | Input Voltage Swing/Sensitivity
(Differential Configuration) (Note 26) | 75 | | 2600 | 75 | | 2600 | 75 | | 2600 | mV | | t _r
t _f | Output Rise/Fall Times Q, Q (20% – 80%) @ 1 GHz | 20 | 30 | 55 | 20 | 30 | 55 | 20 | 30 | 55 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 23. See Figure 5. $t_{SKEW} = |t_{PLH} t_{PHL}|$ for a nominal 50% Differential Clock Input Waveform. - 24. Within-Device skew is defined as identical transitions on similar paths through a device. - 25. Device–to–device skew for identical transitions at identical V_{CC} levels. - 26. V_{INPP} (MAX) cannot exceed V_{CC} V_{EE}. ^{22.} Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V. For minimum f_{max} value of 10.709 GHz, output amplitude is approximately 200 mV (as shown in Figure 4, where output P–P spec is shown as a minimum/guarantee of around 150 mV). Input edge rates 40 ps (20% – 80%). **Table 9. AC CHARACTERISTICS for QFN–16** $V_{CC} = 0 \text{ V}; V_{EE} = -3.465 \text{ V} \text{ to } -2.375 \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ to } 3.465 \text{ V}; V_{EE} = 0 \text{ V} \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ to } 3.465 \text{ V}; V_{EE} = 0 \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ to } 3.465 \text{ V}; V_{EE} = 0 \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ to } 3.465 \text{ V}; V_{EE} = 0 \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ to } 3.465 \text{ V}; V_{CC} = 2.375 \text{ V} \text{ or } V_{CC} = 2.375 \text{ V} \text{ to } 3.465 \text{ V}; V_{CC} = 0 \text{$ | | | | –40°C | | | 25°C | | | 85°C | | | |--|--|------|--------------|----------------|------|--------------|----------------|------|--------------|----------------|------| | Symbol | Characteristic | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Unit | | f _{max} | Maximum Frequency
(See Figure 4. F _{max} /JITTER) (Note 27) | 10.5 | 12 | | 10.5 | 12 | | 10.5 | 12 | | GHz | | t _{PLH} ,
t _{PHL} | Propagation Delay to
Output Differential | 90 | 125 | 160 | 90 | 125 | 160 | 90 | 125 | 160 | ps | | t _{SKEW} | Duty Cycle Skew (Note 28)
Within–Device Skew (Note 29)
Device–to–Device Skew (Note 30) | | 3
6
25 | 15
15
50 | | 3
6
25 | 15
15
50 | | 3
6
25 | 15
15
50 | ps | | t _{JITTER} | RMS Random Clock Jitter f _{in} < 10 GHz Peak-to-Peak Data Dependent Jitter f _{in} < 10 Gb/s | | 0.2
TBD | 1 | | 0.2
TBD | 1 | | 0.2
TBD | 1 | ps | | V _{INPP} | Input Voltage Swing/Sensitivity
(Differential Configuration) (Note 31) | 75 | | 2600 | 75 | | 2600 | 75 | | 2600 | mV | | t _r | Output Rise/Fall Times Q, Q (20% – 80%) @ 1 GHz | 15 | 30 | 55 | 20 | 30 | 55 | 20 | 30 | 55 | ps | NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. - 27. Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} –2.0 V. For minimum f_{max} value of 10.5 GHz, output amplitude is approximately 200 mV (as shown in Figure 4, where output P–P spec is shown as a minimum/guarantee of around 150 mV). Input edge rates 40 ps (20% 80%). - 28. See Figure 5. t_{SKEW} = |t_{PLH} t_{PHL}| for a nominal 50% Differential Clock Input Waveform. - 29. Within–Device skew is defined as identical transitions on similar paths through a device. - 30. Device-to-device skew for identical transitions at identical V_{CC} levels. - 31. $V_{\mbox{\footnotesize{INPP}}}$ (MAX) cannot exceed $V_{\mbox{\footnotesize{CC}}} V_{\mbox{\footnotesize{EE}}}$. Figure 4. Output Voltage Amplitude (V_{OUTPP}) / RMS Jitter vs. Input Frequency (f_{in}) at Ambient Temperature (Typical) Figure 5. AC Reference Measurement Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-------------|---------------------|---| | NBSG11BA | FCBGA-16 | 100 Units / Tray (Contact Sales Representative) | | NBSG11BAR2 | FCBGA-16 | 100 / Tape & Reel | | NBSG11MN | QFN-16 | 123 Units / Rail | | NBSG11MNG | QFN-16
(Pb-Free) | 123 Units / Rail | | NBSG11MNR2 | QFN-16 | 3000 / Tape & Reel | | NBSG11MNR2G | QFN-16
(Pb-Free) | 3000 / Tape & Reel | | Board | Description | | | | | |-------------|---------------------------|--|--|--|--| | NBSG11BAEVB | NBSG11BA Evaluation Board | | | | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. #### **PACKAGE DIMENSIONS** #### FCBGA-16 **BA SUFFIX** PLASTIC 4X4 (mm) BGA FLIP CHIP PACKAGE CASE 489-01 - NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSION D IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLET TO DATUM PLANE Z. 4. DATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. 5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE. | MILLIMETERS | | | | | | | | | |-------------|---|--|--|--|--|--|--|--| | MIN | MAX | | | | | | | | | 1.40 | MAX | | | | | | | | | 0.25 | 0.35 | | | | | | | | | 1.20 | 1.20 REF | | | | | | | | | 0.30 | 0.50 | | | | | | | | | 4.00 | BSC | | | | | | | | | 4.00 | BSC | | | | | | | | | 1.00 | BSC | | | | | | | | | 0.50 | BSC | | | | | | | | | | MIN
1.40
0.25
1.20
0.30
4.00
4.00 | | | | | | | | #### PACKAGE DIMENSIONS #### 16 PIN QFN CASE 485G-01 **ISSUE C** D2 16 16X b е 13 **BOTTOM VIEW** **EXPOSED PAD** E2 е 12 16X L 16X **K** С A B 0.10 0.05 С NOTE 3 NOTE 5 - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL - O.23 AND 0.30 NIM FROM TERMINAS. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L_{max} CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAG | | MILLIMETERS | | |-----|-------------|------| | DIM | MIN | MAX | | Α | 0.80 | 1.00 | | A1 | 0.00 | 0.05 | | A3 | 0.20 REF | | | b | 0.18 | 0.30 | | D | 3.00 BSC | | | D2 | 1.65 | 1.85 | | E | 3.00 BSC | | | E2 | 1.65 | 1.85 | | е | 0.50 BSC | | | K | 0.18 TYP | | | L | 0.30 | 0.50 | #### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and solde details, please download the ON Semiconductor Soldering Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered traderlanks of semiconductor Components industries, ILC (SCILLC). Scillct esserves are injulit of make dranges without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative