

74F841/842
 Bus interface latches

Product data

10-bit bus interface latches, non-inverting/inverting (3-State)

FEATURES

- High speed parallel latches
- Extra data width for wide address/data paths or buses carrying parity
- High impedance NPN base input structure minimizes bus loading
- $I_{\text {IL }}$ is $20 \mu \mathrm{~A}$ for minimum bus loading
- Buffered control inputs to reduce AC effects
- Ideal where high speed, light loading, or increased fan-in are required as with MOS microprocessors
- Positive and negative over-shoots are clamped to ground
- 3-State outputs glitch free during power-up and power-down
- 48 mA sink current
- Slim dual in-line 300 mil package
- Broadside pinout

DESCRIPTION

The 74F841 and 74F842 bus interface latches are designed to provide extra data width for wider address/data paths of buses carrying parity.

The 74F841 consists of ten D-type latches with 3-State outputs. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. This allows asynchronous operation, as the output transition follows the data in transition. On the LE HIGH-to-LOW transition, the data that meets the set-up and hold time is latched.

Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH the output is in the high-impedance state.

The 74F842 is the inverted output version of the 74F841.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
$74 \mathrm{~F} 841,74 \mathrm{~F} 842$	5.5 ns	60 mA

ORDERING INFORMATION

COMMERCIAL RANGE: $V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{a m b}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Type number	Package				Version
	Name	Description	SOT222-1		
N74F841N, N74F842N	DIP24	plastic dual in-line package; 24 leads (300 mil)	SOT137-1		
N74F841D, N74F842D	SO24	plastic small outline package; 24 leads; body width 7.5 mm			

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
Dn	Data inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
LE	Latch Enable input	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
OE	Output Enable input (active-LOW)	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
Qn	Data outputs	$1200 / 80$	$24 \mathrm{~mA} / 48 \mathrm{~mA}$
Qn	Data outputs	$1200 / 80$	$24 \mathrm{~mA} / 48 \mathrm{~mA}$

NOTE: One (1.0) FAST Unit Load is defined as: $20 \mu \mathrm{~A}$ in the HIGH state and 0.6 mA in the LOW state.

PIN CONFIGURATION for 74F841

LOGIC SYMBOL for 74F841

LOGIC SYMBOL (IEEE/IEC) for 74F841

PIN CONFIGURATION for 74F842

LOGIC SYMBOL for 74F842

LOGIC SYMBOL (IEEE/IEC) for 74F842

10-bit bus interface latches, non-inverting/inverting (3-State)

LOGIC DIAGRAM for 74F841

LOGIC DIAGRAM for 74F842

FUNCTION TABLE for 74F841 and 74F842

INPUTS			OUTPUTS		OPERATING MODE
			$\begin{gathered} 74 \mathrm{~F} 841 \\ \hline \text { Qn } \end{gathered}$		
OE	LE	Dn			
L	H	L	L	H	
L	H	H	H	L	
L	\downarrow	1	L	H	ch
L	\downarrow	h	H	L	
H	X	X	Z	Z	High Impedance
L	L	X	NC	NC	Hold

[^0]
ABSOLUTE MAXIMUM RATINGS

Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	input voltage	-0.5 to +7.0	V
I_{N}	input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	voltage applied to output in HIGH output state	-0.5 to V_{CC}	V
$\mathrm{I}_{\text {OUT }}$	current applied to output in LOW output state	84	mA
$\mathrm{~T}_{\text {amb }}$	operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN	NOM	MAX	
$\mathrm{V}_{\text {CC }}$	supply voltage	4.5	5.0	5.5	V
V_{IH}	HIGH-level input voltage	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	-	-	0.8	V
I_{IK}	input clamp current	-	-	-18	mA
IOH	HIGH-level output current	-	-	-24	mA
loL	LOW-level output current	-	-	48	mA
$\mathrm{T}_{\text {amb }}$	operating free-air temperature range	0	-	+70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range unless otherwise noted.

SYMBOL	PARAMETER			TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
				MIN	TYP ${ }^{2}$	MAX							
V_{OH}	HIGH-level output voltage						$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ; \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX} ; \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.2	-	-	V
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.2	3.3			-	V			
				$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0		-	-	V			
				$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.0	-		-	V				
V_{OL}	LOW-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ; \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX} ; \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	-	0.38	0.55	V		
				$\mathrm{IOL}=48 \mathrm{~mA}$		$\pm 5 \% \mathrm{~V}_{\text {CC }}$	-	0.38	0.55	V			
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN} ; \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-	-0.73	-1.2	V			
1	Input current at maximum input voltage			$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\text {I }}=7.0 \mathrm{~V}$			-	-	100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	HIGH-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ; \mathrm{V}_{1}=2.7 \mathrm{~V}$			-	-	20	$\mu \mathrm{A}$			
IIL	LOW-level input current			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ; \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$			-	-	-20	$\mu \mathrm{A}$			
$\mathrm{l}_{\text {OzH }}$	Off-state output current, HIGH-level voltage applied			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			-	-	50	$\mu \mathrm{A}$			
IozL	Off-state output current, LOW-level voltage applied			$\mathrm{V}_{C C}=\mathrm{MAX} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-	-	-50	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$			-100	-	-225	mA			
Icc	Supply current (total)	74F841	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=\mathrm{MAX}$			-	50	65	mA			
			ICCL				-	60	80	mA			
			$\mathrm{I}_{\text {ccz }}$				-	70	92	mA			
			$\mathrm{I}_{\mathrm{CCH}}$				-	40	60	mA			
		74F842	$\mathrm{I}_{\text {CCL }}$		$V_{C C}=M A X$		-	65	90	mA			
			$\mathrm{I}_{\mathrm{CCZ}}$				-	60	90	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter test, Ios tests should be performed last.

10-bit bus interface latches, non-inverting/inverting (3-State)

AC ELECTRICAL CHARACTERISTICS for 74F841/74F842

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \quad \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			MIN	TYP	MAX	MIN	MAX			
tplh tpHL	Propagation delay Dn to Qn	74F841		Waveform 1, 2	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	ns
tplH tpHL	Propagation delay LE to Qn			Waveform 1, 2	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 9.5 \end{gathered}$	ns
$\overline{t_{P L H}}$ $\mathrm{t}_{\mathrm{t} H \mathrm{~L}}$	Propagation delay Dn to \bar{Q}	74F842	Waveform 1, 2	$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.5 \end{aligned}$	ns	
$\left\lvert\, \begin{aligned} & \mathrm{t} \text { tLH } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}\right.$	Propagation delay LE to Qn		Waveform 1, 2	$\begin{aligned} & \hline 5.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 9.5 \end{aligned}$	ns	
$\begin{array}{\|l\|l} \mathrm{t}_{\text {PZH }} \\ \mathrm{t}_{\text {PZL }} \end{array}$	Output enable time HIGH or LOW-level $\overline{O E}$ to Qn or \bar{Q}		Waveform 4 Waveform 5	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.5 \end{gathered}$	ns	
$\begin{array}{\|l\|l\|} \hline \text { tphz } \\ \text { tpLZ } \\ \hline \end{array}$	Output disable time HIGH or LOW-level OE to Qn or Qn		Waveform 4 Waveform 5	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.5 \end{aligned}$	ns	

AC SET-UP REQUIREMENTS for 74F841/74F842

SYMBOL	PARAMETER		TEST CONDITION	LIMITS				UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \quad \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$					
			MIN	TYP	MIN	MAX			
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ \mathrm{t}_{\mathrm{c}}(\mathrm{~L} \end{array}$	Set-up time, HIGH or LOW Dn to LE			Waveform 3	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	-	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	-	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \end{aligned}$	Hold time, HIGH or LOW Dn to LE	74F841		Waveform 3	$\begin{aligned} & \hline 2.5 \\ & 3.0 \end{aligned}$	-	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	-	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	LE pulse width, HIGH		Waveform 3	3.5	-	4.0	-	ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{n}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, HIGH or LOW Dn to LE	74F842	Waveform 3	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	-	ns	
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	LE pulse width, HIGH		Waveform 3	3.0	-	3.0	-	ns	

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation delay, non-inverting path

Waveform 3. Data set-up and hold times

Waveform 4. 3-State Output Enable time to HIGH level and Output Disable time from HIGH level

Waveform 2. Propagation delay, inverting path

Waveform 5. 3-State Output Enable time to LOW level and Output Disable time from LOW level

TEST CIRCUIT AND WAVEFORMS

DEFINITIONS:

$R_{L}=$ Load resistor; see AC electrical characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

family	INPUT PULSE REQUIREMENTS					
	amplitude	$\mathbf{V}_{\mathbf{M}}$	rep. rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{T} \text { LH }}$	$\mathbf{t}_{\mathbf{T H L}}$
74 F	3.0 V	1.5 V	1 MHz	500 ns	2.5 ns	2.5 ns

DIMENSIONS (mm dimensions are derived from the original inch dimensions)

UNIT	$\underset{\text { max. }}{A}$	A_{1} min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	M_{H}	w	$\mathrm{Z}^{(1)}$
mm	4.7	0.38	3.94	$\begin{aligned} & 1.63 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 31.9 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 6.73 \\ & 6.25 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.51 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.13 \\ & 7.62 \end{aligned}$	$\begin{array}{r} 10.03 \\ 7.62 \end{array}$	0.25	2.05
inches	0.185	0.015	0.155	$\begin{aligned} & 0.064 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.022 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 1.256 \\ & 1.240 \end{aligned}$	$\begin{aligned} & 0.265 \\ & 0.246 \end{aligned}$	0.1	0.3	$\begin{aligned} & 0.138 \\ & 0.120 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.395 \\ & 0.300 \end{aligned}$	0.01	0.081

Note

1. Plastic or metal protrusions of $0.25 \mathrm{~mm}(0.01 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT222-1		MS-001		- ¢	$\begin{aligned} & -99-12-27 \\ & 03-03-12 \end{aligned}$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.1	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.05	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of $0.15 \mathrm{~mm}(0.006 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT137-1	075E05	MS-013		\square -	$\begin{aligned} & -9-12-27 \\ & 03-02-19 \end{aligned}$

REVISION HISTORY

Rev	Date	Description
-4	20040123	Product data (9397 750 12746). ECN 853-1208 A15379 of 22 January 2004. Replaces Product specification 74F841/842/843/845/846_3 dated 1999 Jun 23 (9397 750 06143). Modifications: \bullet
-3	19990623	Delete all references to 74F843, 74F845, 74F846 (products discontinued). Replaces datasheet 74F841/842/843/844/845/846 of 1999 Jan 08.

Data sheet status

Level	Data sheet status ${ }^{[1]}$	Product status ${ }^{[2] ~[3] ~}$	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later rdate. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and suppl. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products-including circuits, standard cells, and/or software-described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

© Koninklijke Philips Electronics N.V. 2004
For additional information please visit
http://www.semiconductors.philips.com.
Fax: +31 402724825
All rights reserved. Printed in U.S.A.

For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.

[^0]: $\mathrm{H}=\mathrm{HIGH}$ voltage level
 L = LOW voltage level
 $h=$ HIGH state one set-up time before the HIGH-to-LOW LE transition
 I = LOW state one set-up time before the HIGH-to-LOW LE transition
 $\downarrow=$ HIGH-to-LOW transition
 $X=$ Don't care
 $N C=$ No change
 Z = High impedance "off" state

