OKI Semiconductor

MSM9405

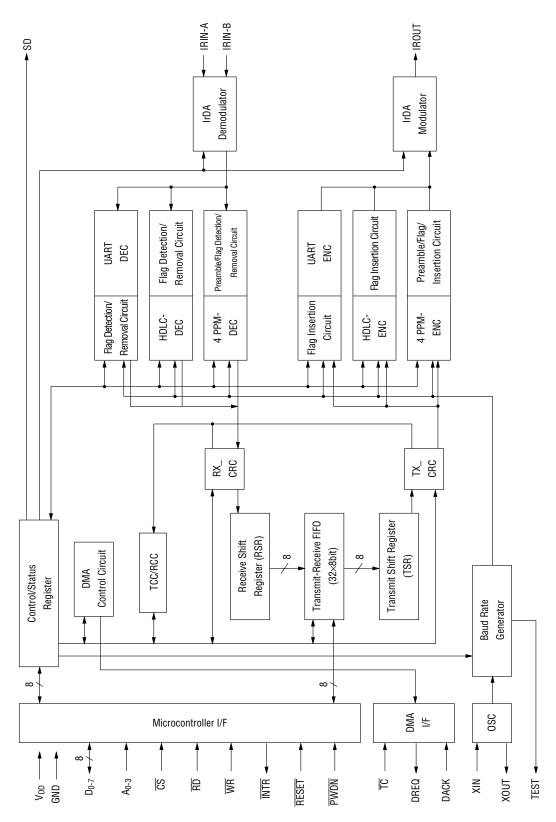
IrDA Communication Controller

GENERAL DESCRIPTION

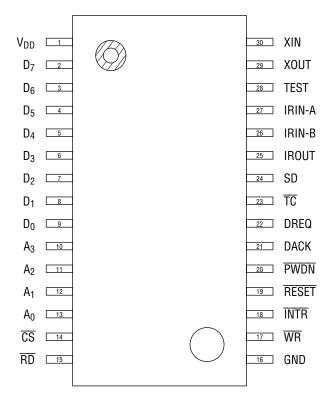
The MSM9405 is a communication controller conforming to IrDA, the international standard for infrared data communication. The device covers the IrDA physical specifications Ver.1.0 and 1.1.

Since the device performs some of the functions concerning communication protocol control, the load on the software (firmware) for protocol control can be reduced. By combining the device with another microcontroller and an infrared transceiver module, a device provided with IrDA-compliant communication function can be configured.

FEATURES


• Data transfer rates	
IrDA 1.0	: 2400, 9600 bps; 19.2, 38.4, 57.6, 115.2 kbps
IrDA 1.1	: 0.576, 1.152, 4 Mbps

• Detection/removal for beginning of frame and end of frame (IrDA 1.0, 1.1)


Insertion for beginning of frame and end of frame (IrDA 1.0, 1.1)

- Generation/check for CRC (IrDA 1.0, 1.1)
- Host interface
 - 8-bit data bus: D_0 - D_7 DMA transfer: DREQ, DACK, \overline{TC} Interrupt: \overline{INTR} Address: A_0 - A_3 Control signal: \overline{CS} , \overline{RD} , \overline{WR}
- Infrared module control signal : SD
- Built-in 32-byte transmit-receive FIFOs
- Power down mode
- Built-in oscillator circuit
- Crystal oscillation frequency : 18.432 MHz (other than 4 Mbps data rate) : 48 MHz (when 4 Mbps data rate used)
- Operating voltage (V_{DD}) : 2.7 to 3.6 V
- Package: 30-pin plastic SSOP (SSOP30-P-56-0.65-K) (Product name : MSM9405MB)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

30-Pin Plastic SSOP

PIN DESCRIPTIONS

Function	Pin	Symbol	Туре	Description
Transceiver	27	IRIN-A	I	Receive signal input A. (2.4 kbps to 4 Mbps) ^{*1}
Module Interface	26	IRIN-B	I	Receive signal input B. (0.576 to 4 Mbps)
				When connecting this device to a transceiver module,
				tie this pin high or low if the number of the receive signal
				output pins that the module has is only one. ^{*1}
	25	IROUT	0	Transmit signal output. Active high.
	24	SD	0	Transceiver module control signal output.
				Becomes active when PWDN is set low. ^{*1}
				This pin must be left open if connecting this device to a
				transceiver module having no shutdown pins.
Microcontroller	9-2	D ₀ -D ₇	I/0	Data input-output.
Interface	13-10	A ₀ -A ₃	I	Register address inputs.
	14	CS	I	Chip select input. Active low.
				When low, read and write signals are enabled.
	15	RD	I	Read signal input. Active low.
	17	WR	I	Write signal input. Active low.
	18	INTR	0	Interrupt request signal output. Active low.
DMA Controller	22	DREQ	0	DMA Request signal output. ^{*1}
Interface	21	DACK	I	DMA acknowledge signal input. ^{*1}
	23	TC	I	DMA transfer end signal input. Active low.
Others	20	PWDN	I	Power down control. Active low.
				When set low, oscillation stops and the device enters power
				down (low supply current) mode.
	19	RESET	I	System reset input. Active low.
				When set low, the internal registers are initialized.
	28	TEST	0	Test. Must be left open.
	30	XIN	I	Crystal connect.
	29	XOUT	0	Crystal connect.
	1	V _{DD}	_	Power supply.
	16	GND	_	Ground.

*1 Either active high or active low can be selected depending on the register setting.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Supply Voltage	V _{DD}	—	-0.5 to +4.0	V
Input Voltage	VI	—	-0.5 to +6.0	V
Power Dissipation	PD	_	230	mW
Storage Temperature	T _{STG}	_	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit
Supply Voltage	V _{DD}	_	2.7 to 3.6	V
Operating Temperature	T _{op}	—	-20 to +70	°C
Crystal Oscillation	face		18.432 MHz ±200 ppm or 48 MHz ±100 ppm	
Frequency	tosc			

ELECTRICAL CHARACTERISTICS

DC Characteristics

$(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, \text{ Ta} = -20 \text{ to } +70^{\circ}\text{C})$

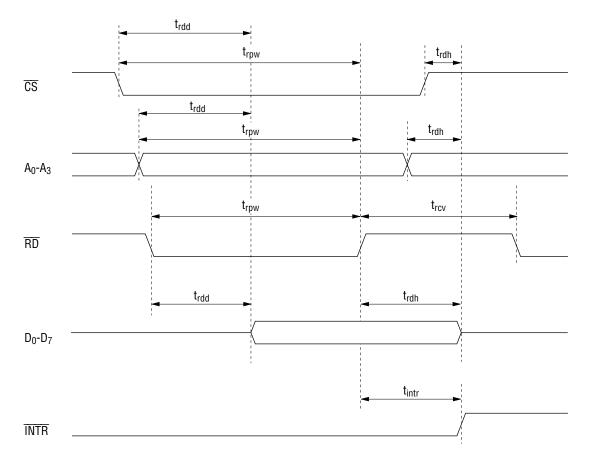
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Applicable Pin	
"H" Input Voltage	V _{IH}	—	2.2	—	5.5	V	IRIN-A, IRIN-B, PWDN	
"L" Input Voltage	VIL	—	0		0.8 ^{*1}	v	$A_0\text{-}A_3,\overline{CS},\overline{RD},\overline{WR},$	
Input Leakage Current	ILI	$V_I = V_{DD}/0 V$	—		±1	μA	TC, RESET, DACK	
"H" Input Voltage	V _{IH}		2.2		5.5	v		
"L" Input Voltage	VIL	—	0	_	0.8 ^{*1}	V		
Input Leakage Current	ILI	$V_I = V_{DD}/0 V$	—		±10	μA	D ₀ -D ₇	
"H" Output Voltage	V _{OH}	$I_0 = -4 \text{ mA}$	2.4	—	—	v		
"L" Output Voltage	V _{OL}	$I_0 = 4 \text{ mA}$			0.4	V		
"H" Output Voltage	V _{OH}	$I_0 = -4 \text{ mA}$	2.4	_	—	V	IROUT, INTR, DREQ	
"L" Output Voltage	V _{OL}	$I_0 = 4 \text{ mA}$	—	—	0.4	V	INUUT, INTR, DREW	
Supply Current	I _{DD}	—	_	_	20	mA	V _{DD}	
Supply Current	I	When <u>PWDN</u> = "L"				۸	M	
(during Power Down)	IDPN					μA	V _{DD}	

*1 1.0 V when V_{DD} = 3.0 to 3.6 V

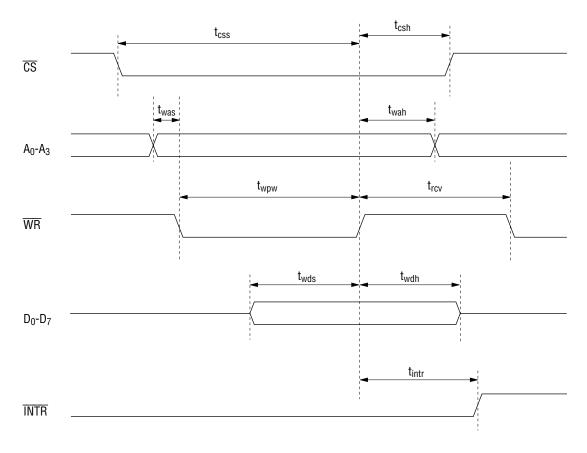
AC Characteristics

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Read Pulse Width	t _{rpw}	_	120/70	_		ns	*1
Read Data Delay Time	t _{rdd}	_	_		60	ns	*2
Read Data Hold Time	t _{rdh}	_	0		20	ns	*3
Read/Write Recovery Time	t _{rcv}	_	60			ns	
CS Setup Time	t _{css}	_	60	_		ns	
CS Hold Time	t _{csh}	_	0			ns	
Write Address Hold Time	t _{wah}	_	0			ns	
Write Pulse Width	t _{wpw}	_	120/70			ns	*1
Write Data Setup Time	t _{wds}	_	60			ns	
Write Data Hold Time	t _{wdh}	_	-10			ns	
Write Address Setup Time	t _{was}	_	-10			ns	
Interrupt Clear Time	t _{intr}	_	—		120/70	ns	*1
DACK Pulse Width	t _{dak}	_	60			ns	
DACK Setup Time	t _{acs}	_	10			ns	
DREQ Clear Time	t _{drqr}	_	_		120/70	ns	*1
DACK Hold Time (during Read)	t _{achr}	_	-5			ns	
DACK Hold Time (during Write)	t _{achw}	_	10			ns	
TC Pulse Width	t _{tcw}	_	50			ns	
TC Setup Time	t _{tcs}	_	0			ns	
TC Hold Time	t _{tch}	_	0			ns	
CID Dulco Width	+	Transmitter	_	1.63		μs	
SIR Pulse Width	t _{spw}	Receiver	0.9			μs	
CID Data Data Talaranga	CDDT	Transmitter	_		±0.87	%	
SIR Data Rate Tolerance	SDRT	Receiver	_		±2.0	%	
		Transmitter	_	218		ns	
MIR Pulse width	t _{mpw}	Receiver	100			ns	
MID Data Data Talayanas	MODT	Transmitter	_		±0.1	%	
MIR Data Rate Tolerance	MDRT	Receiver	_		±0.2	%	
FID Gingle Dules Width		Transmitter	_	125		ns	
FIR Single Pulse Width	t _{fpw}	Receiver	70	_	165	ns	
FID Data Data Talaranaa	ЕРРТ	Transmitter	_		±0.01	%	
FIR Data Rate Tolerance	FDRT	Receiver	_	_	±0.1	%	
		Transmitter	—	250		ns	
FIR Double Pulse Width	t _{fdpw}	Receiver	195	_	285	ns	
Reset Pulse Width	t _{rstw}	_	70			ns	

 $(V_{DD} = 2.7 \text{ to } 3.6 \text{ V}, \text{ Ta} = -20 \text{ to } +70^{\circ}\text{C})$

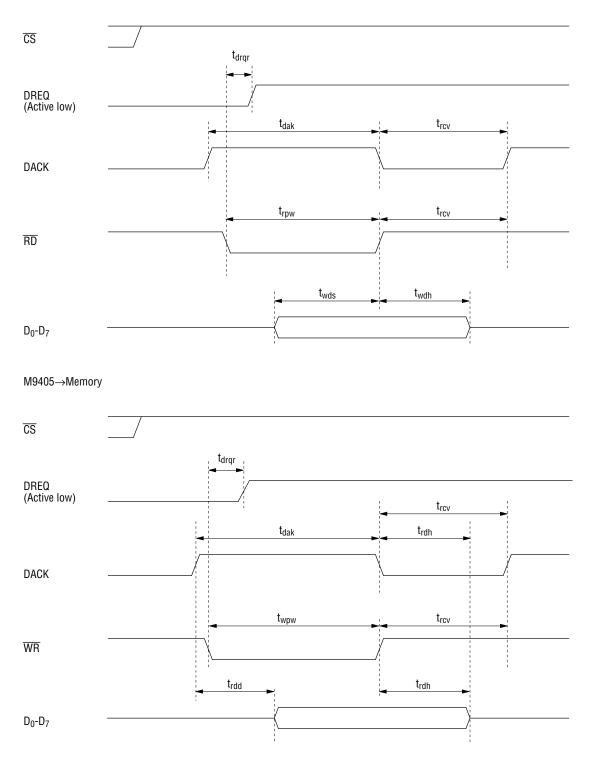

*1 120 ns when crystal oscillation frequency = 18.432 MHz,

70 ns when crystal oscillation frequency = 48 MHz

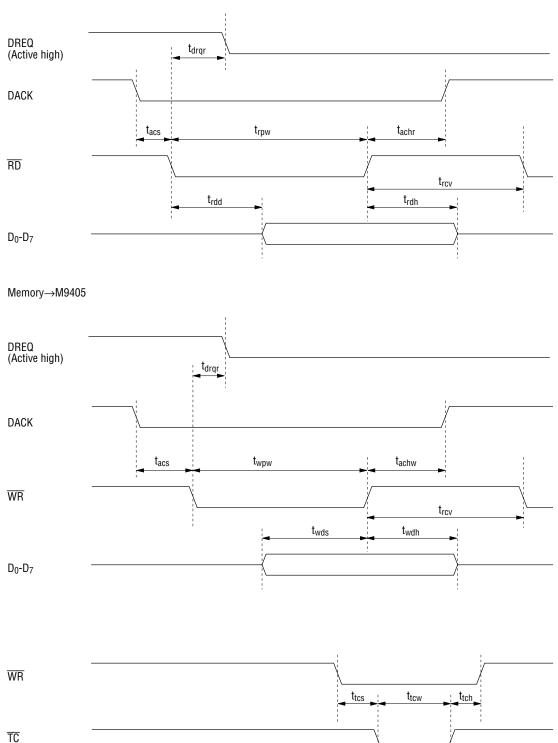

*2 That which occurs latest of the following is to be used for the data delay time (t_{rdd}) : the change of the state of A_0 - A_3 , the change from \overline{CS} high to low, and the change from \overline{RD} high to low.

*3 That which occurs first of the following is to be used for the read data hold time (t_{rdh}) : the change of the state of A_0 - A_3 , the change from \overline{CS} low to high, and the change from \overline{RD} low to high.

• Read timing

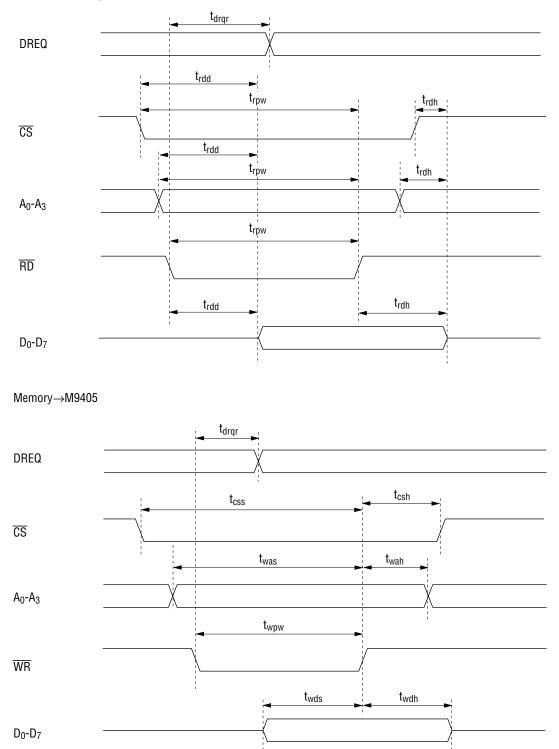


• Write timing

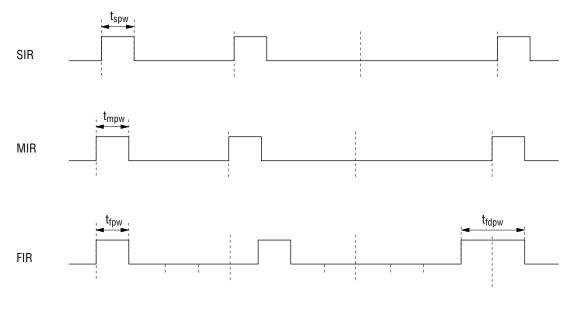


• DMAC access timing 1

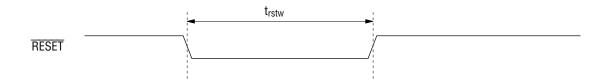
$$\label{eq:def-DMA_EN} \begin{split} \mathsf{DMA}_{EN} &= \texttt{"1"}, \ \mathsf{DMA}_{SL_1} = \texttt{"0"}, \ \mathsf{DMA}_{SL_0} = \texttt{"0"} \\ \mathsf{Memory} &\rightarrow \mathsf{M9405} \end{split}$$



• DMAC access timing 2



• DMAC access timing 3


DMA_EN = "1", DMA_SL₁ = "1", DMA_SL₀ = "1" or "0" M9405→Memory

• Infrared interface timing

• Reset timing

FUNCTIONAL DESCRIPTION

Modes

There are four modes provided by the MSM9405 for IrDA communication. Communication with IrDA1.0 is in SIR mode or Extended-SIR mode, while communication with IrDA1.1 is in MIR mode or FIR mode. In SIR mode, the MSM9405 has the necessary UART feature for IrDA communication. The Extended-SIR mode is an original feature of the MSM9405. In this mode, BOF/EOF insertion and CRC calculation/check are performed by the MSM9405. Therefore, the burden to the CPU can be reduced compared with IrDA1.0 communication using ordinary UART. Moreover, the Extended-SIR mode allows DMA transfer even in IrDA1.0 communication. In MIR mode, IrDA1.1 communication at up to 1.152 Mbps is possible. The FIR mode supports 4 Mbps transfer for IrDA1.1. Features of each mode are as follows:

mada	node Transfer rate		CRC	EOF	CE insertion/	"0" insertion/	Preamble
mode	Transfer rate	DUF	BOF CRC		removal	removal	insertion/removal
SIR	2.4 to 115.2 kbps	SW	SW	SW	SW	—	_
Extended-SIR	2.4 to 115.2 kbps	HW	HW	HW	HW	_	_
MIR	0.576, 1.152 Mbps	HW	HW	HW	—	HW	_
FIR	4 Mbps	HW	HW	HW	_	_	HW

MSM9405 Modes Comparison

CE : Control Escape Byte SW : Software HW : Hardware

Sending/Receiving Switching Method

Mode switching between sending and receiving is made using the TX_EN and RX_EN bits in the ICR1 (Infrared Control Register 1). For sending, writing "1" in TX_EN puts the MSM9405 in the sending mode. Writing "1" in RX_EN puts the MSM9405 in the receiving mode. If "0" is written to both TX_EN and RX_EN bits, the MSM9405 does not perform sending/receiving but enters the idle state. Each register can be set even during the idle state. Data to be sent can be written in advance to the FIFO during the idle state.

If "1" is written to both TX_EN and RX_EN, the MSM9405 is put in the receiving mode.

DMA Transfer

The MSM9405 allows DMA transfer. The DMA transfer mode covers the single transfer mode and demand transfer mode, but not the block transfer mode. When a DMA controller with TC output is used for sending, the DMA controller and MSM9405 automatically perform high-speed transfer if the maximum frame length is specified for TFL and the transfer data length for the TC counter of the DMA controller.

The timing when the DREQ signal is asserted is as follows:

During receiving, DREQ is asserted when data in the FIFO is at or above the receiving threshold level or time-out occurs.

If all of the received data in the FIFO is read, DREQ is deasserted.

During sending, DREQ is asserted when data in the FIFO is lower than the sending threshold level. Sent data is written and DREQ is deasserted when the FIFO becomes full or TXE_EV occurs.

Time-out

The MSM9405 outputs an interrupt request or DMA request depending on the register setting when the following time-out occurs even if the received data is below the receiving threshold level:

The condition causing time-out in MIR or FIR mode is:

At least 1-byte data is in the receiving FIFO and $69.5\,\mu$ s has passed after data is written from the receiving shift register to the FIFO. During this period, the CPU or DMA controller does not read the FIFO data.

The condition causing time-out in SIR or Extended SIR mode is:

At least 1-byte data is in the receiving FIFO and time (Tout) has passed after data is written from the receiving shift register to the FIFO. During this period, the CPU or DMA controller does not read the FIFO data.

Tout = $4 \times 8 \times 1$ /baud rate

baud rate: Transfer rate (2.4 to 115.2 kbps)

Register Map

The MSM9405 contains 14 registers, of which 13 are available. Each register can be selected with the register address assigned from 0h through Ch. Various setting options are provided for each register to allow optimum communication.

TT1	· · · 11 · · · 11 · · 1 · · · ·	TTL to to to 1.1. to	stand of the second second
I ne registers	are listed below.	I ne register table is	given on the next page.

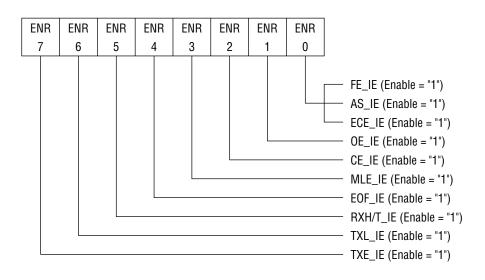
A ₃ -A ₀	R/W	Register Nan	ne	Description
0h	R	RDR		Receive data register
UII	W	TDR		Transmit data register
1h	R/W	ENR		Interrupt enable register
2h	R	EIR		Interrupt event and status indication register
3h	R	LSR		Status register
4h	R/W	ICR1		Transmit-receive control register
5h	R/W	ICR2		BOF count setting register
6h	R/W	MSR		Register for setting a transfer mode and a data rate and selecting a
				crystal to be used
7h	R/W	DSR		DMA mode setting register
8h	R/W	FCR		FIFO threshold setting register
9h	R/W	TFL (L)	*1	Transmit frame-length setting register (low-order byte)
Ah	R/W	TFL (H)	*1	Transmit frame-length setting register (high-order byte)
9h	R	TCC (L)	*1	Transmitter current-count register (low-order byte)
Ah	R	TCC (H)	*1	Transmitter current-count register (high-order byte)
Bh	R/W	MDS (L)	*2	Maximum data size setting register (low-order byte)
0h	R/W	MDS (H)	*2	Maximum data size setting register (high-order byte)
Bh	R	RST (L)	*2	Receiver frame length stack register (low-order byte)
Ch	R	RST (H)	*2	Receiver frame length stack register (high-order byte)
Fh	R/W	TEST		Used for test.

*1 Whether TFL or TCC is read depends on the setting of the CTEST bit in the MSR register.

*2 Whether MDS or RST is read depends on the setting of the CTEST bit in the MSR register.

Register Table

A al al	Register	Mada		Function of each bit									
Add	name	Mode	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0	תחת/ חחד	- 11		TDR ₇	TDR ₆	TDR ₅	TDR ₄	TDR ₃	TDR ₂	TDR ₁	TDR ₀		
0	TDR/RDR	all	R/W	/RDR ₇	/RDR ₆	/RDR ₅	/RDR ₄	/RDR ₃	/RDR ₂	/RDR ₁	/RDR ₀		
		SIR					*		*				
4		Ex-SIR				RXH/T					FE_IE		
1	ENR	MIR	R/W	TXE_IE	TXL_IE	_IE	EOF_IE	MLE_IE	CE_IE	OE_IE	AS_IE		
		FIR									ECE_IE		
		SIR					*		*				
0	FID	Ex-SIR	п			RXH/T					FE_EV		
2	EIR	MIR	R	TXE_EV	TXL_EV	_EV	EOF_EV	MLE_EV	CE_EV	OE_EV	AS_EV		
		FIR									ECE_EV		
		SIR											
3	LSR	Ex-SIR	R	FLV ₅	FLV ₄	FLV ₃	FLV ₂	FLV ₁	FLV ₀	IR_DET	TOUT		
3	LON	MIR		FLV5	FLV4	FLV3	1602	FLV1	LLA0		1001		
		FIR											
		SIR				*		*	*				
4	ICR1	Ex-SIR	R/W	MS_EN	TCC_EN	CRC_	FCLR			RX_EN	TX_EN		
т	IOITI	MIR	11/ 11	MO_EN	100_EN	INV	TOLI	IR_PLS	S_EOT	IX_LN			
		FIR											
		SIR						*	*	*	*		
5	ICR2	Ex-SIR	R/W	CTEST	SD INV	SD INV	SD_INV	IRIN	RXINV	SBF ₃	SBF ₂	SBF ₁	SBF ₀
Ū	TONE	MIR	10,00	01201	00_000	_SL		MBF ₃	MBF ₂	MBF ₁	MBF ₀		
		FIR						*	*	*	*		
6	MSR	all	R/W	DRS ₂	DRS ₁	DRS ₀	XT_SL	*	*	IRSL ₁	IRSL ₀		
7	DSR	all	R/W	*	*	*	*	*	DMA_	DMA_	DMA_		
									SL ₁	SL ₀	EN		
8	FCR	all	R/W	RXTH ₃	RXTH ₂	RXTH ₁	RXTH ₀	TXTH ₃	TXTH ₂	TXTH ₁	TXTH ₀		
9	TFL (L)	all	R/W	TFL ₇	TFL ₆	TFL ₅	TFL ₄	TFL ₃	TFL ₂	TFL ₁	TFL ₀		
	TCC (L)	all	R	TCC7	TCC ₆	TCC ₅	TCC ₄	TCC ₃	TCC ₂	TCC ₁	TCC ₀		
А	TFL (H)	all	R/W	*	*	*	*	TFL ₁₁	TFL ₁₀	TFL ₉	TFL ₈		
	TCC (H)	all	R	*	*	* MDS ₅	*	TCC ₁₁	TCC ₁₀	TCC ₉	TCC ₈		
В	MDS (L)	all	R/W	MDS ₇	-		MDS ₄	MDS ₃	MDS ₂	MDS ₁	MDS ₀		
	RST (L)	all	R	RST ₇	RST ₆	RST ₅	RST ₄	RST ₃	RST ₂	RST ₁	RST ₀		
С	MDS (H)	all	R/W	*	*	*	*	MDS ₁₁	MDS ₁₀	MDS ₉	MDS ₈		
	RST (H)	all	R					RST ₁₁	RST ₁₀	RST ₉	RST ₈		
F	TEST	all	R/W	TEST ₇	TEST ₆	TEST ₅	TEST ₄	TEST ₃	TEST ₂	TEST ₁	TEST ₀		


Registers

• TDR: Transmit Data Register (Write Only) RDR: Receive Data Register (Read Only) (Address = 0h)

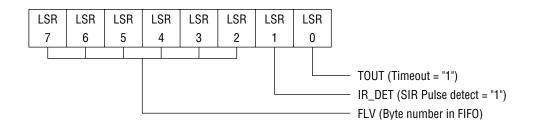
The TDR (Transmit Data Register) and RDR (Receive Data Register) are used to read/write data directly upon receiving/sending the data. The TDR and RDR share the same address. When data is written in the sending mode or during the idle state, the TDR works as the top of the FIFO and 1-byte data can be written to the FIFO. When data is read in the receiving mode, the RDR works as the bottom of the FIFO and 1-byte data in the FIFO can be read. Serial-to-parallel conversion is performed by the RSR. Parallel-to-serial conversion is performed by the TSR. Reading from the TDR or writing to the RDR is invalid. The contents of the FIFO and TDR/RDR are cleard by writing "1" to FCLR in the ICR1 register. The TSR and RSR cannot be cleared.

• ENR: Enable Register (Address = 1h)

The ENR (Enable Register) is used to control enabling/disabling various interrupts on the MSM9405. Each of eight bits corresponds to each of eight interrupts provided on the MSM9405. Each of eight interrupts can be independently controlled by each bit. When the system is reset, all bits are reset to "0". By writing "1" to the bit corresponding to the desired interrupt, the specified interrupt is enabled.

ENR bit	Table bit								
	This bit works as FE_IE in SIR or Extended-SIR mode, as AS_IE in MIR mode, and as ECE_IE in FIR								
	mode.								
	- FE_IE (Framing Error Interrupt Enable) (SIR mode/Extended-SIR mode): This bit enables/disables								
	interrupt when an FE (Framing Error : Stop bit not detected) has occurred.								
ENR[0]	- AS_IE (Abort Sequence Interrupt Enable) (MIR mode): This bit enables/disables interrupt when								
	an abort sequence has been received.								
	- ECE_IE (Encode Error Interrupt Enable) (FIR mode): This bit enables/disables interrupt when an								
	encode error has occurred.								
	OE_IE (Overrun Error Interrupt Enable) : This bit enables/disables interrupt when an OE (Overrun								
ENR[1]	error : Error that occurs when the FIFO is full upon receiving and the next character is completely								
	received by the RSR) has occurred.								
	CE_IE (CRC Error Interrupt Enable) : This bit enables/disables interrupt when a CE (CRC Error) has								
ENR[2]	occurred. This bit is valid in either Extended-SIR, MIR, or FIR mode. In SIR mode, this bit must								
	be set to "0" (disable).								
	MLE_IE (Maximum Length Error Interrupt Enable) : This bit enables/disables interrupt when an MLE								
ENR[3]	(Maximum Length Error: Error that occurs when a frame exceeding the maximum data size set by								
	the MDS is received) has occurred.								
	EOF_IE (End Of Frame Interrupt Enable) : This bit enables/disables interrupt when the last byte in								
ENR[4]	the frame's data field has been detected in either Extended-SIR, MIR, or FIR mode. In SIR mode,								
	this bit must be set to "0" (disable).								
	RXH/T_IE (Receiver High-Data-Level/Timeout Interrupt Enable) : This bit enables/disables interrupt								
ENR[5]	when the received data is at or above the receiving threshold level or time-out has occurred.								
	TXL_IE (Transmitter Low-Data-Level Interrupt Enable) : This bit enables/disables interrupt when the								
ENR[6]	sent data is below the sending threshold level.								
	TXE_IE (Transmitter Empty Interrupt Enable) : This bit enables/disables interrupt when both the								
ENR[7]	FIFO and the TSR have become empty upon sending.								

• EIR: Event Identification Register (Read Only) (Address = 2h)


The EIR (Event Identification Register) indicates factors of various interrupts on the MSM9405. Each of eight bits corresponds to each interrupt bit assignment set on the ENR. The EIR works as the status register even if the interrupt is disabled. When an event occurs, each corresponding bit is set to "1". When the system is reset, all bits are reset to "0".

EIR								
7	6	5	4	3	2	1	0	
								FE_EV (Framing Error = "1") AS_EV (Abort Sequence = "1") ECE_EV (Encode Error = "1") OE_EV (Overrun Error = "1") CE_EV (CRC Error = "1") MLE_EV (Maximum Length = "1") EOF_EV (EOF = "1") RXH/T_EV (RX High-Data-Level/Timeout = "1") TXL_EV (TX Low-Data-Level = "1") TXE_EV (TX Empty = "1")

EIR bit	Description
	This bit works as FE_EV in SIR or Extended-SIR mode, as AS_EV in MIR mode, and as ECE_EV in
	FIR mode. When the CPU reads the EIR contents, this bit is set to "0".
EIR[0]	- FE_EV (Framing Error Event) (SIR mode/Extended-SIR mode): The bit is set to "1" when FE occurs.
	- AS_EV (Abort Sequence Event) (MIR mode): The bit is set to "1" when an abort sequence is received.
	- ECE_EV (Encode Error Event) (FIR mode): The bit is set to "1" when ECE occurs.
	OE_EV (Overrun Error Event): When OE occurs, this bit is set to "1". When the CPU reads the EIR
EIR[1]	contents, OE_EV is set to "0". The RSR characters are not transferred to the FIFO but overwritten.
	CE_EV (CRC Error Event): When a CRC error occurs, this bit is set to "1". When the CPU reads the
EIR[2]	EIR, this bit is set to "0". This bit is valid in either Extended-SIR, MIR, or FIR mode.
	This bit is not used in SIR mode.
EIR[3]	MLE_EV (Maximum Length Error Event): When MLE occurs, this bit is set to "1". When the CPU
	reads the EIR, this bit is set to "0".
	EOF_EV (End Of Frame Event): This bit is valid in either Extended-SIR, MIR, or FIR mode. When the
EIR[4]	last byte in the frame's data field reaches the bottom of the FIFO in receiving mode, EOF_EV
	is set to "1". When the CPU reads the EIR, this bit is set to "0". In SIR mode, this bit is not used.
	RXH/T_EV (Receiver High-Data-Level/Timeout Event): When received data in the FIFO is at or above
	the receiving threshold level or time-out occurs, RXH/T_EV is set to "1".
	The condition for setting RXH/T_EV to "0" depends on the following two cases :
EIR[5]	If received data in the FIFO is at or above the receiving threshold level : Received data is read.
	When received data in the FIFO is below the threshold level, this bit is set to "0".
	If time-out occurs :
	After received data in the FIFO is read, this bit is set to "0".
	TXL_EV (Transmitter Low-Data-Level Event): When sent data in the FIFO is below the sending
EIR[6]	threshold level, this bit is set to "1". When sent data is written and sent data in the FIFO is at or
	above the threshold level, this bit is set to "0".
EIR[7]	TXE_EV (Transmitter Empty Event): When both FIFO and TSR are empty in sending mode, this bit
	is set to "1". When the CPU reads the EIR, this bit is set to "0".

• LSR: Line Status Register (Read Only) (Address = 3h)

The LSR (Line Status Register) indicates various statuses of the MSM9405 that is running. When the system is reset, all bits of the LSR are set to "0". This register is for read only and cannot be written.

LSR bit	Description
	TOUT (FIFO Timeout): When time-out occurs in the FIFO during receiving, this bit is set to "1".
LSR[0]	When received data is read from the FIFO, TOUT is set to "0".
	IR_DET (SIR Pulse detect) : This bit is set to "1" when a pulse having a width of t _{spw} (SIR pulse width
LSR[1]	upon receiving). It is set to "0" when the CPU reads the LSR.
LSR[2-7]	FLV (FIFO Level): These bits indicate the number of data items in the FIFO with a value of 0 to 32.

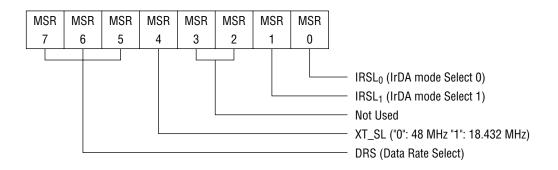
• ICR1: Infrared Control Register 1 (Address = 4h)

The ICR1 (Infrared Control Register 1) is used to set various environment so that the MSM9405 can perform IrDA communication under proper conditions. When the system is reset, all bits of ICR1 are set to "0".

ICR1								
7	6	5	4	3	2	1	0	
								 TX_EN ("1": Transmit Enable) RX_EN ("1": Receive Enable) S_EOT ("1": Set End Of Transmission) IR_PLS ("1": Send Interaction Pulse) FCLR ("1": FIFO Clear) CRC_INV ("1": Send Inverted CRC Enable) TCC_EN ("0": TCC off, "1": TCC on) MS_EN ("1": Automatic mode Select)

ICR1 bit	Description
	TX_EN (Transmit Enable): When "1" is written to this bit, the sending mode is selected. When "0" is
ICR1[0]	written to this bit, sending terminates when data remaining in the FIFO has all been sent. In this
	case, the TXE interrupt does not occur.
ICR1[1]	RX_EN (Receive Enable): When "1" is written to this bit, the receiving mode is selected. When "0" is
	written to this bit, the device enters receive end mode.
	S_EOT (Set End Of Transmission): This bit is valid in Extended-SIR, MIR, or FIR mode. When "1" is
	written to this bit, the data written to the FIFO next time is recognized as the end of frame, and
ICR1[2]	immediately after it, the data added with CRC and EOF is sent as a frame. After a frame is sent,
	this bit is automatically set to "0". To use S_EOT, TFL must be set to the maximum value or TCC
	must be unused with TCC_EN = "0". This bit is not used in SIR mode.
	IR_PLS (Send Interaction Pulse): This bit is valid in MIR or FIR mode. When "1" is written to
ICR1[3]	this bit, an approximately 2-µs serial infrared interaction pulse is sent immediately after the frame
1011[3]	being sent. After a frame is sent, this bit is automatically set to "0". This bit is not used in SIR
	mode and Extended-SIR mode.
	FCLR (FIFO Clear): When "1" is written to this bit, the FIFO (including the TDR and RDR) is made
ICR1[4]	empty. The FIFO threshold level does not change. The TSR and RSR are not cleared. When the
	FIFO is made empty, this bit is automatically set to "0".
	CRC_INV (Invert Transmitter CRC): This bit is valid in Extended-SIR, MIR, or FIR mode and is not
ICR1[5]	used in SIR mode. When "1" is written to this bit, transmission is interrupted if TXE (Transmitter
	Empty) occurs. The inverted CRC and EOF are automatically added to the frame that caused TXE,
	then the frame is sent. Writing "0" to this bit disables this function.
	TCC_EN (TCC Enable): This bit is valid in Extended-SIR, MIR, or FIR mode. When this bit is set to
ICR1[6]	"1", the TCC is enabled. When TCC_EN is set to "0", the TCC is disabled. To use S_EOT, the TFL
	must be set to the maximum value or the TCC must be disabled with TCC_EN = "0".
	MS_EN (Mode Select Enable): When "1" is written to this bit, the MSM9405 performs the following
	operation depending on the mode. After the operation is completed, this bit is automatically set to
	"0".
	If the MSM9405 is in FIR mode:
	1. The SD pin is set to "H", and the Tx pin to "H".
ICR1[7]	2. Approximately 300 ns later, the SD pin is set to "L".
	3. Approximately 300 ns later, the Tx pin is set to "L".
	If the MSM9405 is in SIR, Extended-SIR, or MIR mode:
	1. The SD pin is set to "H", and the Tx pin to "L".
	2. Approximately 300 ns later, the SD pin is set to "L".
	3. The Tx pin is held in the "L" level for approximately 300 ns.

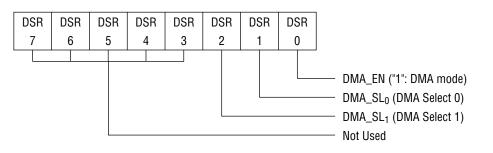
• ICR2: Infrared Control Register 2 (Address = 5h)


The ICR2 (Infrared Control Register 2) is used to set various environment so that the MSM9405 can perform IrDA communication under proper conditions. When the system is reset, all bits of ICR2 are set to "0".

ICR2								
7	6	5	4	3	2	1	0	
								SBF (SIR Beginning Flags)
								MBF (MIR Beginning Flags)
								— RXINV ("1": Signal Invert)
								— IRIN_SL ("0": Single Input "1": Double Input)
								SD_INV ("0": SD Active High "1": SD Active Low)
								— CTEST ("0": TCC/RST "1": TFL/MDS)

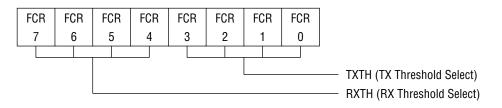
IRC2 bit		D	escription						
	These bits work as the SBF when Extended-SIR mode is selected, and as the MBF when the MIR								
	mode is selected. This function is disabled in SIR mode and FIR mode.								
	SBF (SIR beginning Flags): These bits determine the number of BOFs to be added during								
	sending in Extended-SIR mode as shown below.								
	MBF (MIR Beginning Flags): These bits determine the number of BOFs to be added during								
	sending in MIR mode a	s shown below.							
	Encoc	ling SIR BOFs	MIR BOFs						
	000	0 1	2						
	000	1 2	3						
	001	0 3	4						
	001	1 4	5						
ICR2[0-3]	010	0 5	8						
- []	010	1 7	12						
	011	0 9	16						
	011	1 13	24						
	100	0 17	24						
	100	1 25	24						
	101	0 49	24						
	101	1 49	24						
	110	0 49	24						
	110	1 49	24						
	111	0 49	24						
	111	1 49	24						
	DVINV (IDIN Signal Inv	ort): This hit is used	to salact active lov	v or active high of the receive signal					
ICR2[4]	RXINV = "0": Active lov			v or active mgn of the receive signal					
1002[4]	RXINV = 0: Active low RXINV = "1": Active high								
	IRIN_SL (IRIN Select):		how the receive sid	unal input nin is used					
	IRIN_SL = "0": Only the		-						
ICR2[5]	-	-		y selected depending on the transfe					
	rate. (A: 2.4 to 115.2 k			y selected depending on the transie					
				e high/low) of the SD pin output on					
	the MSM9405.	ert). This bit changes	s the polarity (activ						
ICR2[6]	$SD_INV = "0"$: Active h	iah ("H" output durin	a chutdown)						
	SD_INV = 0. Active In SD_INV = "1": Active Ic	•	- ,						
				L/TCC and MDS/RCC are read after					
ICR2[7]	"1" is written to this bit,	•							
	i is written to this Dit,		uues can be obtain	eu.					

• MSR: Mode Select Register (Address = 6h)


The MSR is used to select various modes of the MSM9405. When the system is reset, each bit is set to the initial value.

MSR Bit			Des	cription	
	IRSL (Infrared	Mode Select):	These bits are us	sed to select the trans	fer mode as shown be
	The initial valu	e is set to "00"			
		IRSL ₁	IRSL ₀	mode	
MSR[0-1]		0	0	SIR	
100110-11		0	1	Extended-SIR	
		1	0	MIR	
	-	1	1	FIR	
MSR[2-3]	These bits are	not used.			
	XT_SL (Crysta	I Select): This	bit determines th	e crystal to be used.	
MCDIAI	The initial valu	e is set to "O".			
MSR[4]	XT_SL = "0": 4	48 MHz crystal	is used		
	VT CI _ "1". 1	18.432 MHz cr	vetal ie ucod		
	$\Lambda I_{OL} = I.$		ystai is useu		
			-	the transfer rate as sh	iown below. The initia
		te Select): The	-	the transfer rate as sh	own below. The initia
	DRS (Data Rat	te Select): The	-	the transfer rate as sh MIR Data Rate	own below. The initia
	DRS (Data Rat	te Select): The	se bits determine		
	DRS (Data Rat	te Select): The Encoding	se bits determine SIR Data Rate	MIR Data Rate	FIR Data Rate
MSR[5-7]	DRS (Data Rat	te Select): The Encoding 000	se bits determine SIR Data Rate 2400 bps	MIR Data Rate 0.576 Mbps	FIR Data Rate reserved
MSR[5-7]	DRS (Data Rat	te Select): Thes Encoding 000 001	se bits determine SIR Data Rate 2400 bps 9600 bps	MIR Data Rate 0.576 Mbps 1.152 Mbps	FIR Data Rate reserved 4 Mbps
MSR[5-7]	DRS (Data Rat	te Select): The Encoding 000 001 010	Se bits determine SIR Data Rate 2400 bps 9600 bps 19.2 kbps	MIR Data Rate 0.576 Mbps 1.152 Mbps reserved	FIR Data Rate reserved 4 Mbps reserved
MSR[5-7]	DRS (Data Rat	te Select): The Encoding 000 001 010 011	Se bits determine SIR Data Rate 2400 bps 9600 bps 19.2 kbps 38.4 kbps	MIR Data Rate 0.576 Mbps 1.152 Mbps reserved reserved	FIR Data Rate reserved 4 Mbps reserved reserved
MSR[5-7]	DRS (Data Rat	te Select): The Encoding 000 001 010 011 100	SIR Data Rate 2400 bps 9600 bps 19.2 kbps 38.4 kbps 57.6 kbps	MIR Data Rate 0.576 Mbps 1.152 Mbps reserved reserved reserved	FIR Data Rate reserved 4 Mbps reserved reserved reserved

• DSR: DMA Mode Select Register (Address = 7h)


The DSR (DMA Mode Select Register) is used to select the DMA mode for the MSM9405. When the system is reset, all bits of DSR are set to "0".

DSR Bit			Description						
	DMA_EN (DMA Mode Enable): This bit determines whether the DMA is to be used. The initial value is set to "0".								
	When "1" is written to this bit, $DSR[1-2]$ (DMA_SL_0 , DMA_SL_1) setting is enabled and the								
DSR[0]	MSM9405 enters the DMA transfer standby mode. (DREQ is asserted when the DREQ assert								
	condition is met.)								
			SL_0 , DMA_SL_1) setting is disabled and DMA transfer is not						
	performed. (DR	EQ is not asserted of	even if the DREQ assert condition is met.)						
	DMA_SL (DMA	Select): These bits	are used to select the method of interfacing with DMAC.						
	DMA_SL ₁	DMA_SL ₀	Function						
	0	0	DREQ becomes active low and DACK becomes active high						
			When the $\overline{\text{RD}}$ signal becomes active while DACK is active,						
			the DMA read cycle (Memory \rightarrow M9405) is selected. When						
			the \overline{WR} signal becomes active while DACK is active, the						
			DMA write cycle (M9405 \rightarrow Memory) is selected. While						
			DACK is being asserted, address "0" (TDR/RDR) is						
			accessed regardless of the status of A_0 to A_3 .						
DSR[1-2]	0	1	DREQ becomes active high and DACK becomes active low						
			When the \overline{WR} signal becomes active while DACK is active,						
			the DMA read cycle (Memory \rightarrow M9405) is selected. When						
			the RD signal becomes active while DACK is active, the						
			DMA write cycle (M9405 \rightarrow Memory) is selected. While						
			DACK is being asserted, address "0" (TDR/RDR) is						
			accessed regardless of the status of A_0 to A_3 .						
	1	0	DREQ becomes active low and DACK becomes active high.						
			DACK is disabled.						
	1	1	DREQ becomes active high and DACK becomes active low.						
			DACK is disabled.						
DSR[3-7]	These bits are n	ot used.							
	1								

FCR : FIFO Control Register (Address = 8h)

The FCR (FIFO Control Register) is used to set the threshold level of the FIFO to be used by the MSM9405 upon sending/receiving. The FCR setting is applied to both interrupt and DMA. When the system is reset, the FCR is set to the initial value.

FCR bit		Description						
	TXTH (Transmit Threshold Select): These four bits set the following 16 sending threshold level to the following 16 sending the following 16 sending thresh							
	The initial value is set to "0111".							
	FCR (0-3)	TX Threshold Level (Byte)						
	0000	01						
	0001	02						
	0010	04						
	0011	06						
	0100	08						
	0101	10						
FCR[0-3]	0110	12						
	0111	14						
	1000	16						
	1001	18						
	1010	20						
	1011	22						
	1100	24						
	1101	26						
	1110	28						
	1111	30						
FCR[4-7]		These four bits set the following 16 receiving thres (4-7) value and receiveing threshold level is the san						
	relationship between the FCR (0-3) and sending threshold level. The initial value is se	t to "0111:					

TFL : (Transmitter Frame Length Register TCC : Transmitter Current-Count Register (Address = 9, Ah)

The TFL (Transmitter Frame Length) and TCC (Transmitter Current-Count Register) are used to specify the length of the frame to be transferred for sending. The TFL and TCC shares the same address. Bits 0 to 7 of address 9h and bits 0 to 3 of address Ah (totally 12 bits) are used. Bit 0 of address 9h is the LSB.

When the TFL/TCC value is read, the CTEST setting is reflected. If CTEST = "0", the TCC contents can be read. If CTEST = "1", the TFL contents can be read. When the TFL/TCC is written, the TFL value is rewritten. The TCC cannot be written.

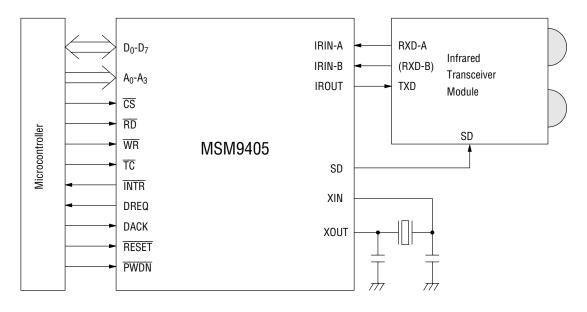
To use the TFL/TCC, write "1" to TCC_EN, and set the frame length in the TFL. The frame length to be set does not include the CE, FCS, BOF, and EOF. When "1" is written to TX_EN, the TFL value that has been set as the frame length is loaded to the TCC. When sending is started, the TCC value is decremented by 1 each time 1 byte is sent. When the TCC value becomes "0", the end of frame is assumed and the frame is automatically added with the CRC and EOF and sent. After one frame is sent, the TFL value is loaded again into the TCC when the BOF of the second frame is sent.

The TFL/TCC initial value is set to 800h.

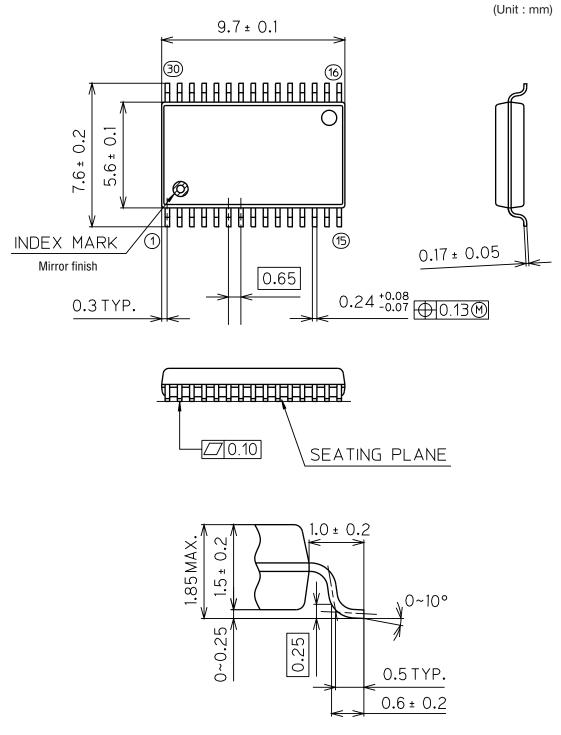
MDS : Maximum Data Size Register RST : Receiver Frame Length Stack Register (Address = B, Ch)

The MDS (Maximum Data Size Register) is used to set the maximum data size. The RST (Receiver Frame Length Stack Register) is used to stack the received frame length. The MDS and RST share the same address. Bits 0 to 7 of address Bh and bits 0 to 3 of address Ch (totally 12 bits) are used. Bit 0 of address Bh is the LSB.

When the MDS/RST value is read, the CTEST setting is reflected. If CTEST = "0", the RST contents can be read. If CTEST = "1", the MDS contents can be read. When the MDS/RST is written, the MDS value is rewritten. The RST cannot be written.


To use the MDS, set the maximum data size in the MDS in advance. The frame length to be set does not include the CE, FCS, BOF, and EOF in the Extended-SIR, MIR, and FIR modes. (However, it does include them in the SIR mode.) When receiving is started, the internal counter value is incremented by 1 each time one byte is received. If the internal counter value exceeds the MDS value during receiving, MLE occurs. The MDS initial value is set to 800h.

When a frame is fully received and all the data in the received frame is taken out of the FIFO, the received frame length counted by the internal counter is stacked in the RST. This value is stored untill the next frame is fully received. The value stacked in the RST is maintained even if MSM9405 sending/receiving is switched. The RST initial value is set to 0h.


TEST : Test Register (Address = Fh)

This register is used for testing.

APPLICATION CIRCUIT

PACKAGE OUTLINES AND DIMENSIONS

30-Pin Plastic SSOP