

EV8042DF-00B

High Current, Dual Channel Power Half-Bridge Evaluation Board

The Future of Analog IC Technology [™]

GENERAL DESCRIPTION

The EV8042DF-00B is the evaluation board for the MP8042, a high current, dual channel power half-bridge. It accepts PWM modulated inputs for operation.

The MP8042 features a low current shutdown mode, standby mode, input under voltage protection, thermal shutdown and fault flag signal output. Each channel can be driven independently as stereo single-ended audio amplifiers, or driven complementary in a bridgetied load (BTL) audio amplifier configuration. Both channels of the driver interface with standard logic signals. The MP8042 is available in a 20-pin TSSOP (with Exposed Pad) package.

ELECTRICAL SPECIFICATIONS

Parameter	Symbol	Value	Units
Supply Voltage	V_{DD}	7.5 – 24	V
Peak Output Current	I _{PEAK}	5	Α

FEATURES

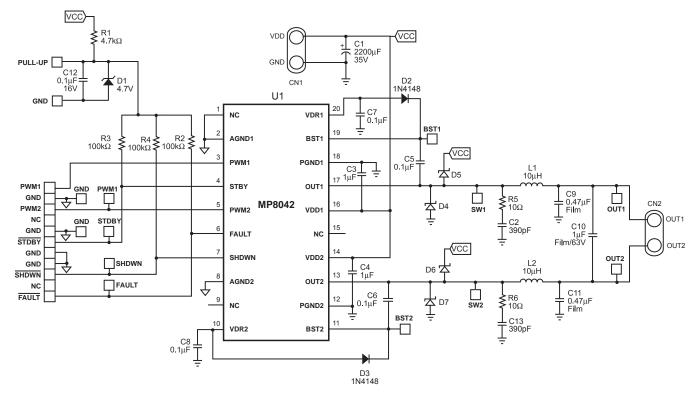
- ±5A Peak Current Output
- Up to 600KHz Switching Frequency
- Protected Integrated Power 150mΩ Switches
- 30ns Switch Dead Time
- All Switches Current Limited
- Under Voltage Protection
- Thermal Protection
- 4µA Quiescent Current at Shutdown
- Fault Output Flag
- Stereo Single-Ended: 20W/Channel, 4Ω Load
- Bridge Tied-Load Output Power: 40W, 8Ω Load

APPLICATIONS

Class D Audio Drivers

"MPS" and "The Future of Analog IC Technology" are Trademarks of Monolithic Power Systems, Inc.

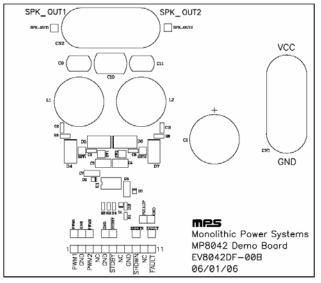
EV8042DF-00B EVALUATION BOARD



(L x W x H) 4.0" x 3.5" x 1.0" (10.2cm x 8.9cm x 2.5cm)

Board Number	MPS IC Number
EV8042DF-00B	MP8042DF

EVALUATION BOARD SCHEMATIC



EV8042DF-00B BILL OF MATERIALS

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer P/N
	C1	2200µF	Electrolytic Cap.,35V, NHG	Radial	Panasonic	ECA-1VHG222
	C2, C13	390pF	Ceramic Cap., 50V, X7R	SM0805	Panasonic	ECU-V1H391KBN
	C3, C4	1µF	Ceramic Cap., 50V, X7R	1210	TDK	C3225X7R1H105K
	C5, C6	0.1µF	Ceramic Cap., 50V, X7R	0805	TDK	C2012X7R1H104K
	C7, C8	0.1µF	Ceramic Cap., 25V, X5R	1206	Panasonic	ECJ-3VB1E104K
	C9, C11	0.47µF	Film Cap., 50V, V-Series	Radial	Panasonic	ECQ-V1H474JL
	C10	1µF	Film Cap., 63V, V-Series	Radial	Panasonic	ECQ-V1J105JM
	C12	0.1µF	Ceramic Cap., 16V, X7R	0603	TDK	C1608X7R1C104K
	R1	4.7kΩ	Film Res., 5%	0603	Panasonic	ERJ-3GEYJ472V
	R2, R3, R4	100kΩ	Film Res., 5%	0603	Panasonic	ERJ-3GEYJ104V
	R5, R6	10Ω	Ceramic Res., 5%	SM0805	Panasonic	ERJ-6GEYJ100V
	D1		Diode Zener, 4.7V, 200mW	SOD-323	Diodes Inc.	BZT52C4V7S-7
	D2, D3		Diode Switch, 75V, 200mW	SOD-323	Diodes Inc.	1N4148WS-7
	D4, D5, D6, D7		Diode Schottky, 30V, 1A	SMB	IR	MBRS130LTR
	L1, L2	10µH	Power Inductor, 7A	Radial	Toko	16RHBP-100M
	CN1, CN2		Banana Jacks, Red and Black			
	U1		Class D Audio Amplifier	TSSOP-20	MPS	MP8042DF

PRINTED CIRCUIT BOARD LAYOUT

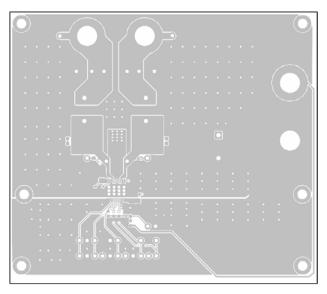


Figure 2—Top Layer

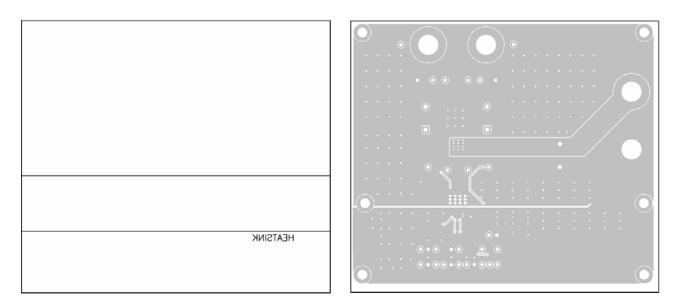


Figure 3—Bottom Silk Layer

Figure 4—Bottom Layer

QUICK START GUIDE

The EV8042DF-00B comes pre-configured to operate as a BTL (Bridge-Tied Load) audio power driver, where a complementary PWM modulated audio signal (PWM and \overline{PWM}) is used an input, and music is played to a speaker connected to the output. For BTL operation, follow the steps in the Quick Start Guide for BTL Operation section. For Single-Ended operation, make modifications and follow the steps as described in the Quick Start Guide for Single-Ended Operation section.

Quick Start Guide for BTL (Bridge-Tied Load) Operation

Input/Output Requirements

- 1. Power supply: 7.5V to 24V.
- 2. Complementary PWM Signal Source (PWM, PWM).
- 3. Speaker Load: 4Ω or 8Ω .

Setup Condition for Operation

- 4. Connect the speaker between SPK_OUT1 and SPK_OUT2 terminals.
- 5. Connect a PWM signal source to PWM1 and the complementary signal source PWM to PWM2, respectively. Use the GND terminal between PWM1 and PWM2 as the ground connection for the PWM inputs.
- 6. Apply power to the board.
- 7. Audio should be heard through the speaker.

Quick Start Guide for SE (Single-Ended) Operation

Input/Output Requirements

- 1. Power supply: 7.5V to 24V.
- 2. Stereo PWM Signal Source.
- 3. Two Speaker Loads: 4Ω or 8Ω each.

Setup Condition for Operation

- 4. Remove C10 and connect the speakers as shown in Figure 5.
- 5. Connect the stereo PWM signal source to the EV board. Connect channel 1 to PWM1 and channel 2 to PWM2, respectively. Use the GND terminals between PWM1 and PWM2 as the ground connections for the PWM inputs.
- 6. Apply power to the board.
- 7. Audio should be heard through the speakers.

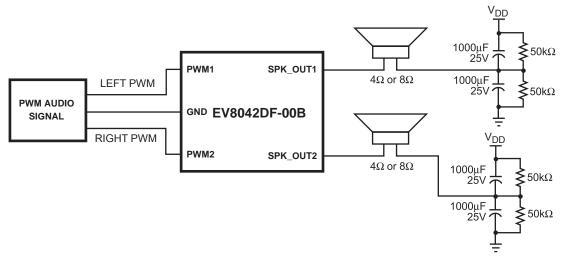


Figure 5—Setup for Single-Ended Operation

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.