

September 1983 Revised January 2005

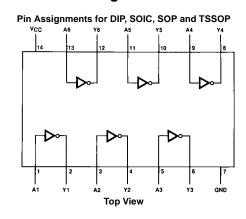
MM74HCU04 **Hex Inverter**

General Description

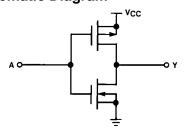
The MM74HCU04 inverters utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits.

The MM74HCU04 is an unbuffered inverter. It has high noise immunity and the ability to drive 15 LS-TTL loads. The 74HCU logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\mbox{\footnotesize CC}}$ and ground.

Features


- Typical propagation delay: 7 ns
- Fanout of 15 LS-TTL loads
- Quiescent power consumption: 10 µA maximum at room temperature
- Low input current: 1 µA maximum

Ordering Code:


Order Number	Package Number	Package Description
MM74HCU04M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HCU04MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HCU04SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCU04MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCU04N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74HCU04N_NL	N14A	Pb-Free 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Schematic Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

Power Dissipation (P_D)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

(Soldering 10 seconds) 260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -

12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

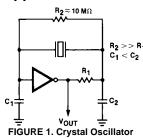
Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -55 \text{ to } 125^{\circ}\text{C}$		Units
Syllibol	Farameter		*CC	Тур		Guaranteed L	Units	
V _{IH}	Minimum HIGH Level		2.0V		1.7	1.7	1.7	V
	Input Voltage		4.5V		3.6	3.6	3.6	V
			6.0V		4.8	4.8	4.8	V
V _{IL}	Maximum LOW Level		2.0V		0.3	0.3	0.3	V
	Input Voltage		4.5V		0.8	0.8	0.8	V
			6.0V		1.1	1.1	1.1	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	2.0	1.8	1.8	1.8	V
			4.5V	4.5	4.0	4.0	4.0	V
			6.0V	6.0	5.5	5.5	5.5	V
		V _{IN} = GND						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.2	0.2	0.2	V
			4.5V	0	0.5	0.5	0.5	V
			6.0V	0	0.5	0.5	0.5	V
		$V_{IN} = V_{CC}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	40	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$						

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation		7	13	ns
	Delay				


AC Electrical Characteristics

 $V_{CC} = 2.0 \text{V}$ to 6.0 V, $C_L = 50 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		T _A =-40 to 85°C	T _A =-55 to 125°C	Units
Cyllibol	i arameter			Тур	Guaranteed Limits			Oilles
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	49	82	103	120	ns
	Delay		4.5V	9.9	16	21	24	ns
			6.0V	8.4	14	18	20	ns
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	110	ns
	and Fall Time		4.5V	8	15	19	22	ns
			6.0V	7	13	16	19	ns
C _{PD}	Power Dissipation	(per gate)		90				pF
	Capacitance (Note 5)							
C _{IN}	Maximum Input			8	15	15	15	pF
	Capacitance							

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

Typical Applications

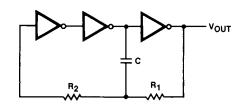
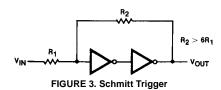
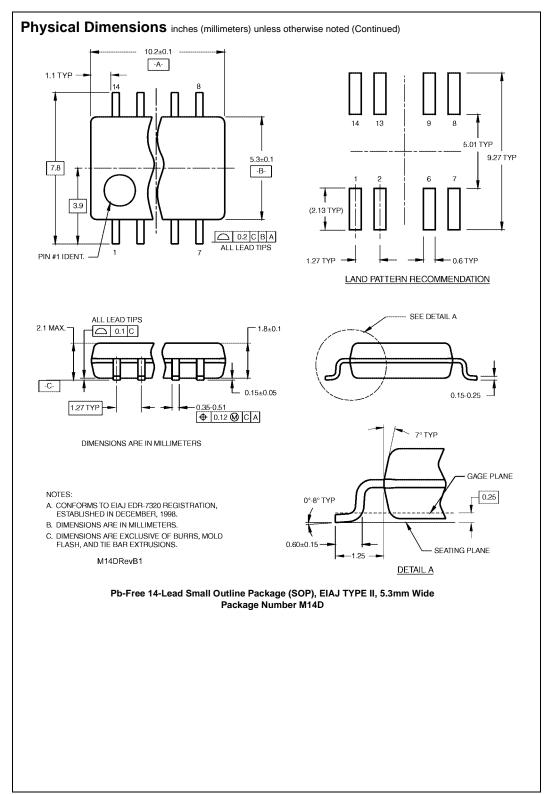
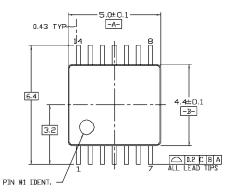



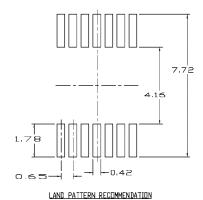
FIGURE 2. Stable RC Oscillator

Physical Dimensions inches (millimeters) unless otherwise noted $\frac{0.335 - 0.344}{(8.509 - 8.738)}$ LEAD NO. 1 IDENT 0.010 MAX (0.254) $\frac{0.150 - 0.157}{(3.810 - 3.988)}$ $\frac{0.053 - 0.069}{(1.346 - 1.753)}$ $\frac{0.010 - 0.020}{(0.254 - 0.508)}$ 8° MAX TYP ALL LEADS $\frac{0.004 - 0.010}{(0.102 - 0.254)}$ SEATING PLANE 0.014 0.008 - 0.010 (0.203 - 0.254) TYP ALL LEADS 0.050 (1.270) TYP $\frac{0.014 - 0.020}{(0.356 - 0.508)} \text{ TYP}$

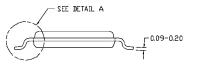

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

0.008 (0.203) TYP

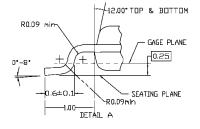

M14A (REV h)


0.016 - 0.050 (0.406 - 1.270) TYP ALL LEADS

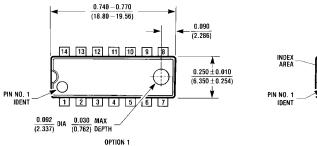
0.004 (0.102) ALL LEAD TIPS

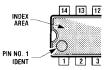


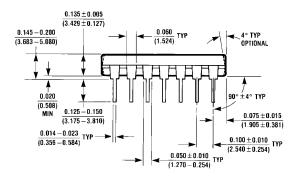
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

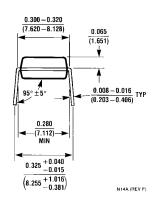

ALL LEAD TIPS $0.90^{+0.15}_{-0.10}$ L2 MAX -C-0.10±0.05 0.19 - 0.30 | \$\Phi\$ | 0.13\mathbb{A} | B\mathbb{S} | C\mathbb{S} |

NOTES:


- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB_ REF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 1982


MTC14revD


14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

OPTION 02

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com